Metamath Proof Explorer


Theorem tanhval-named

Description: Value of the named tanh function. Here we show the simple conversion to the conventional form used in set.mm, using the definition given by df-tanh . (Contributed by David A. Wheeler, 10-May-2015)

Ref Expression
Assertion tanhval-named
|- ( A e. ( `' cosh " ( CC \ { 0 } ) ) -> ( tanh ` A ) = ( ( tan ` ( _i x. A ) ) / _i ) )

Proof

Step Hyp Ref Expression
1 oveq2
 |-  ( x = A -> ( _i x. x ) = ( _i x. A ) )
2 1 fveq2d
 |-  ( x = A -> ( tan ` ( _i x. x ) ) = ( tan ` ( _i x. A ) ) )
3 2 oveq1d
 |-  ( x = A -> ( ( tan ` ( _i x. x ) ) / _i ) = ( ( tan ` ( _i x. A ) ) / _i ) )
4 df-tanh
 |-  tanh = ( x e. ( `' cosh " ( CC \ { 0 } ) ) |-> ( ( tan ` ( _i x. x ) ) / _i ) )
5 ovex
 |-  ( ( tan ` ( _i x. A ) ) / _i ) e. _V
6 3 4 5 fvmpt
 |-  ( A e. ( `' cosh " ( CC \ { 0 } ) ) -> ( tanh ` A ) = ( ( tan ` ( _i x. A ) ) / _i ) )