| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sinhval-named |  |-  ( A e. CC -> ( sinh ` A ) = ( ( sin ` ( _i x. A ) ) / _i ) ) | 
						
							| 2 |  | ax-icn |  |-  _i e. CC | 
						
							| 3 |  | mulcl |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 4 | 2 3 | mpan |  |-  ( A e. CC -> ( _i x. A ) e. CC ) | 
						
							| 5 | 4 | sincld |  |-  ( A e. CC -> ( sin ` ( _i x. A ) ) e. CC ) | 
						
							| 6 |  | ine0 |  |-  _i =/= 0 | 
						
							| 7 |  | divrec2 |  |-  ( ( ( sin ` ( _i x. A ) ) e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( ( sin ` ( _i x. A ) ) / _i ) = ( ( 1 / _i ) x. ( sin ` ( _i x. A ) ) ) ) | 
						
							| 8 | 2 6 7 | mp3an23 |  |-  ( ( sin ` ( _i x. A ) ) e. CC -> ( ( sin ` ( _i x. A ) ) / _i ) = ( ( 1 / _i ) x. ( sin ` ( _i x. A ) ) ) ) | 
						
							| 9 | 5 8 | syl |  |-  ( A e. CC -> ( ( sin ` ( _i x. A ) ) / _i ) = ( ( 1 / _i ) x. ( sin ` ( _i x. A ) ) ) ) | 
						
							| 10 |  | irec |  |-  ( 1 / _i ) = -u _i | 
						
							| 11 | 10 | oveq1i |  |-  ( ( 1 / _i ) x. ( sin ` ( _i x. A ) ) ) = ( -u _i x. ( sin ` ( _i x. A ) ) ) | 
						
							| 12 | 11 | a1i |  |-  ( A e. CC -> ( ( 1 / _i ) x. ( sin ` ( _i x. A ) ) ) = ( -u _i x. ( sin ` ( _i x. A ) ) ) ) | 
						
							| 13 | 1 9 12 | 3eqtrd |  |-  ( A e. CC -> ( sinh ` A ) = ( -u _i x. ( sin ` ( _i x. A ) ) ) ) |