Step |
Hyp |
Ref |
Expression |
1 |
|
sinhval-named |
|- ( A e. CC -> ( sinh ` A ) = ( ( sin ` ( _i x. A ) ) / _i ) ) |
2 |
|
ax-icn |
|- _i e. CC |
3 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
4 |
2 3
|
mpan |
|- ( A e. CC -> ( _i x. A ) e. CC ) |
5 |
4
|
sincld |
|- ( A e. CC -> ( sin ` ( _i x. A ) ) e. CC ) |
6 |
|
ine0 |
|- _i =/= 0 |
7 |
|
divrec2 |
|- ( ( ( sin ` ( _i x. A ) ) e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( ( sin ` ( _i x. A ) ) / _i ) = ( ( 1 / _i ) x. ( sin ` ( _i x. A ) ) ) ) |
8 |
2 6 7
|
mp3an23 |
|- ( ( sin ` ( _i x. A ) ) e. CC -> ( ( sin ` ( _i x. A ) ) / _i ) = ( ( 1 / _i ) x. ( sin ` ( _i x. A ) ) ) ) |
9 |
5 8
|
syl |
|- ( A e. CC -> ( ( sin ` ( _i x. A ) ) / _i ) = ( ( 1 / _i ) x. ( sin ` ( _i x. A ) ) ) ) |
10 |
|
irec |
|- ( 1 / _i ) = -u _i |
11 |
10
|
oveq1i |
|- ( ( 1 / _i ) x. ( sin ` ( _i x. A ) ) ) = ( -u _i x. ( sin ` ( _i x. A ) ) ) |
12 |
11
|
a1i |
|- ( A e. CC -> ( ( 1 / _i ) x. ( sin ` ( _i x. A ) ) ) = ( -u _i x. ( sin ` ( _i x. A ) ) ) ) |
13 |
1 9 12
|
3eqtrd |
|- ( A e. CC -> ( sinh ` A ) = ( -u _i x. ( sin ` ( _i x. A ) ) ) ) |