Step |
Hyp |
Ref |
Expression |
1 |
|
sinhval-named |
|- ( A e. CC -> ( sinh ` A ) = ( ( sin ` ( _i x. A ) ) / _i ) ) |
2 |
|
sinhval |
|- ( A e. CC -> ( ( sin ` ( _i x. A ) ) / _i ) = ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) |
3 |
1 2
|
eqtrd |
|- ( A e. CC -> ( sinh ` A ) = ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) |
4 |
|
coshval-named |
|- ( A e. CC -> ( cosh ` A ) = ( cos ` ( _i x. A ) ) ) |
5 |
|
coshval |
|- ( A e. CC -> ( cos ` ( _i x. A ) ) = ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) |
6 |
4 5
|
eqtrd |
|- ( A e. CC -> ( cosh ` A ) = ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) |
7 |
3 6
|
oveq12d |
|- ( A e. CC -> ( ( sinh ` A ) + ( cosh ` A ) ) = ( ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) + ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) ) |
8 |
|
2cn |
|- 2 e. CC |
9 |
|
2ne0 |
|- 2 =/= 0 |
10 |
|
efcl |
|- ( A e. CC -> ( exp ` A ) e. CC ) |
11 |
|
negcl |
|- ( A e. CC -> -u A e. CC ) |
12 |
|
efcl |
|- ( -u A e. CC -> ( exp ` -u A ) e. CC ) |
13 |
11 12
|
syl |
|- ( A e. CC -> ( exp ` -u A ) e. CC ) |
14 |
10 13
|
addcld |
|- ( A e. CC -> ( ( exp ` A ) + ( exp ` -u A ) ) e. CC ) |
15 |
10 13
|
subcld |
|- ( A e. CC -> ( ( exp ` A ) - ( exp ` -u A ) ) e. CC ) |
16 |
|
divdir |
|- ( ( ( ( exp ` A ) - ( exp ` -u A ) ) e. CC /\ ( ( exp ` A ) + ( exp ` -u A ) ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( ( exp ` A ) - ( exp ` -u A ) ) + ( ( exp ` A ) + ( exp ` -u A ) ) ) / 2 ) = ( ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) + ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) ) |
17 |
15 16
|
syl3an1 |
|- ( ( A e. CC /\ ( ( exp ` A ) + ( exp ` -u A ) ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( ( exp ` A ) - ( exp ` -u A ) ) + ( ( exp ` A ) + ( exp ` -u A ) ) ) / 2 ) = ( ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) + ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) ) |
18 |
14 17
|
syl3an2 |
|- ( ( A e. CC /\ A e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( ( exp ` A ) - ( exp ` -u A ) ) + ( ( exp ` A ) + ( exp ` -u A ) ) ) / 2 ) = ( ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) + ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) ) |
19 |
18
|
3anidm12 |
|- ( ( A e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( ( exp ` A ) - ( exp ` -u A ) ) + ( ( exp ` A ) + ( exp ` -u A ) ) ) / 2 ) = ( ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) + ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) ) |
20 |
8 9 19
|
mpanr12 |
|- ( A e. CC -> ( ( ( ( exp ` A ) - ( exp ` -u A ) ) + ( ( exp ` A ) + ( exp ` -u A ) ) ) / 2 ) = ( ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) + ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) ) |
21 |
10
|
2timesd |
|- ( A e. CC -> ( 2 x. ( exp ` A ) ) = ( ( exp ` A ) + ( exp ` A ) ) ) |
22 |
10 13 10
|
nppcand |
|- ( A e. CC -> ( ( ( ( exp ` A ) - ( exp ` -u A ) ) + ( exp ` A ) ) + ( exp ` -u A ) ) = ( ( exp ` A ) + ( exp ` A ) ) ) |
23 |
15 10 13
|
addassd |
|- ( A e. CC -> ( ( ( ( exp ` A ) - ( exp ` -u A ) ) + ( exp ` A ) ) + ( exp ` -u A ) ) = ( ( ( exp ` A ) - ( exp ` -u A ) ) + ( ( exp ` A ) + ( exp ` -u A ) ) ) ) |
24 |
21 22 23
|
3eqtr2rd |
|- ( A e. CC -> ( ( ( exp ` A ) - ( exp ` -u A ) ) + ( ( exp ` A ) + ( exp ` -u A ) ) ) = ( 2 x. ( exp ` A ) ) ) |
25 |
24
|
oveq1d |
|- ( A e. CC -> ( ( ( ( exp ` A ) - ( exp ` -u A ) ) + ( ( exp ` A ) + ( exp ` -u A ) ) ) / 2 ) = ( ( 2 x. ( exp ` A ) ) / 2 ) ) |
26 |
7 20 25
|
3eqtr2d |
|- ( A e. CC -> ( ( sinh ` A ) + ( cosh ` A ) ) = ( ( 2 x. ( exp ` A ) ) / 2 ) ) |
27 |
8
|
a1i |
|- ( A e. CC -> 2 e. CC ) |
28 |
9
|
a1i |
|- ( A e. CC -> 2 =/= 0 ) |
29 |
10 27 28
|
divcan3d |
|- ( A e. CC -> ( ( 2 x. ( exp ` A ) ) / 2 ) = ( exp ` A ) ) |
30 |
26 29
|
eqtrd |
|- ( A e. CC -> ( ( sinh ` A ) + ( cosh ` A ) ) = ( exp ` A ) ) |