| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sinhval-named |  |-  ( A e. CC -> ( sinh ` A ) = ( ( sin ` ( _i x. A ) ) / _i ) ) | 
						
							| 2 |  | sinhval |  |-  ( A e. CC -> ( ( sin ` ( _i x. A ) ) / _i ) = ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) | 
						
							| 3 | 1 2 | eqtrd |  |-  ( A e. CC -> ( sinh ` A ) = ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) ) | 
						
							| 4 |  | coshval-named |  |-  ( A e. CC -> ( cosh ` A ) = ( cos ` ( _i x. A ) ) ) | 
						
							| 5 |  | coshval |  |-  ( A e. CC -> ( cos ` ( _i x. A ) ) = ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) | 
						
							| 6 | 4 5 | eqtrd |  |-  ( A e. CC -> ( cosh ` A ) = ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) | 
						
							| 7 | 3 6 | oveq12d |  |-  ( A e. CC -> ( ( sinh ` A ) + ( cosh ` A ) ) = ( ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) + ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) ) | 
						
							| 8 |  | 2cn |  |-  2 e. CC | 
						
							| 9 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 10 |  | efcl |  |-  ( A e. CC -> ( exp ` A ) e. CC ) | 
						
							| 11 |  | negcl |  |-  ( A e. CC -> -u A e. CC ) | 
						
							| 12 |  | efcl |  |-  ( -u A e. CC -> ( exp ` -u A ) e. CC ) | 
						
							| 13 | 11 12 | syl |  |-  ( A e. CC -> ( exp ` -u A ) e. CC ) | 
						
							| 14 | 10 13 | addcld |  |-  ( A e. CC -> ( ( exp ` A ) + ( exp ` -u A ) ) e. CC ) | 
						
							| 15 | 10 13 | subcld |  |-  ( A e. CC -> ( ( exp ` A ) - ( exp ` -u A ) ) e. CC ) | 
						
							| 16 |  | divdir |  |-  ( ( ( ( exp ` A ) - ( exp ` -u A ) ) e. CC /\ ( ( exp ` A ) + ( exp ` -u A ) ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( ( exp ` A ) - ( exp ` -u A ) ) + ( ( exp ` A ) + ( exp ` -u A ) ) ) / 2 ) = ( ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) + ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) ) | 
						
							| 17 | 15 16 | syl3an1 |  |-  ( ( A e. CC /\ ( ( exp ` A ) + ( exp ` -u A ) ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( ( exp ` A ) - ( exp ` -u A ) ) + ( ( exp ` A ) + ( exp ` -u A ) ) ) / 2 ) = ( ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) + ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) ) | 
						
							| 18 | 14 17 | syl3an2 |  |-  ( ( A e. CC /\ A e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( ( exp ` A ) - ( exp ` -u A ) ) + ( ( exp ` A ) + ( exp ` -u A ) ) ) / 2 ) = ( ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) + ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) ) | 
						
							| 19 | 18 | 3anidm12 |  |-  ( ( A e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( ( exp ` A ) - ( exp ` -u A ) ) + ( ( exp ` A ) + ( exp ` -u A ) ) ) / 2 ) = ( ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) + ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) ) | 
						
							| 20 | 8 9 19 | mpanr12 |  |-  ( A e. CC -> ( ( ( ( exp ` A ) - ( exp ` -u A ) ) + ( ( exp ` A ) + ( exp ` -u A ) ) ) / 2 ) = ( ( ( ( exp ` A ) - ( exp ` -u A ) ) / 2 ) + ( ( ( exp ` A ) + ( exp ` -u A ) ) / 2 ) ) ) | 
						
							| 21 | 10 | 2timesd |  |-  ( A e. CC -> ( 2 x. ( exp ` A ) ) = ( ( exp ` A ) + ( exp ` A ) ) ) | 
						
							| 22 | 10 13 10 | nppcand |  |-  ( A e. CC -> ( ( ( ( exp ` A ) - ( exp ` -u A ) ) + ( exp ` A ) ) + ( exp ` -u A ) ) = ( ( exp ` A ) + ( exp ` A ) ) ) | 
						
							| 23 | 15 10 13 | addassd |  |-  ( A e. CC -> ( ( ( ( exp ` A ) - ( exp ` -u A ) ) + ( exp ` A ) ) + ( exp ` -u A ) ) = ( ( ( exp ` A ) - ( exp ` -u A ) ) + ( ( exp ` A ) + ( exp ` -u A ) ) ) ) | 
						
							| 24 | 21 22 23 | 3eqtr2rd |  |-  ( A e. CC -> ( ( ( exp ` A ) - ( exp ` -u A ) ) + ( ( exp ` A ) + ( exp ` -u A ) ) ) = ( 2 x. ( exp ` A ) ) ) | 
						
							| 25 | 24 | oveq1d |  |-  ( A e. CC -> ( ( ( ( exp ` A ) - ( exp ` -u A ) ) + ( ( exp ` A ) + ( exp ` -u A ) ) ) / 2 ) = ( ( 2 x. ( exp ` A ) ) / 2 ) ) | 
						
							| 26 | 7 20 25 | 3eqtr2d |  |-  ( A e. CC -> ( ( sinh ` A ) + ( cosh ` A ) ) = ( ( 2 x. ( exp ` A ) ) / 2 ) ) | 
						
							| 27 | 8 | a1i |  |-  ( A e. CC -> 2 e. CC ) | 
						
							| 28 | 9 | a1i |  |-  ( A e. CC -> 2 =/= 0 ) | 
						
							| 29 | 10 27 28 | divcan3d |  |-  ( A e. CC -> ( ( 2 x. ( exp ` A ) ) / 2 ) = ( exp ` A ) ) | 
						
							| 30 | 26 29 | eqtrd |  |-  ( A e. CC -> ( ( sinh ` A ) + ( cosh ` A ) ) = ( exp ` A ) ) |