| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sinhval-named |
⊢ ( 𝐴 ∈ ℂ → ( sinh ‘ 𝐴 ) = ( ( sin ‘ ( i · 𝐴 ) ) / i ) ) |
| 2 |
|
sinhval |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( i · 𝐴 ) ) / i ) = ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) |
| 3 |
1 2
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( sinh ‘ 𝐴 ) = ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) |
| 4 |
|
coshval-named |
⊢ ( 𝐴 ∈ ℂ → ( cosh ‘ 𝐴 ) = ( cos ‘ ( i · 𝐴 ) ) ) |
| 5 |
|
coshval |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( i · 𝐴 ) ) = ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ) |
| 6 |
4 5
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( cosh ‘ 𝐴 ) = ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ) |
| 7 |
3 6
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( sinh ‘ 𝐴 ) + ( cosh ‘ 𝐴 ) ) = ( ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) + ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ) ) |
| 8 |
|
2cn |
⊢ 2 ∈ ℂ |
| 9 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 10 |
|
efcl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) ∈ ℂ ) |
| 11 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
| 12 |
|
efcl |
⊢ ( - 𝐴 ∈ ℂ → ( exp ‘ - 𝐴 ) ∈ ℂ ) |
| 13 |
11 12
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ - 𝐴 ) ∈ ℂ ) |
| 14 |
10 13
|
addcld |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ∈ ℂ ) |
| 15 |
10 13
|
subcld |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) ∈ ℂ ) |
| 16 |
|
divdir |
⊢ ( ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) ∈ ℂ ∧ ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) + ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) / 2 ) = ( ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) + ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ) ) |
| 17 |
15 16
|
syl3an1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) + ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) / 2 ) = ( ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) + ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ) ) |
| 18 |
14 17
|
syl3an2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) + ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) / 2 ) = ( ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) + ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ) ) |
| 19 |
18
|
3anidm12 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) + ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) / 2 ) = ( ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) + ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ) ) |
| 20 |
8 9 19
|
mpanr12 |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) + ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) / 2 ) = ( ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) + ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ) ) |
| 21 |
10
|
2timesd |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( exp ‘ 𝐴 ) ) = ( ( exp ‘ 𝐴 ) + ( exp ‘ 𝐴 ) ) ) |
| 22 |
10 13 10
|
nppcand |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) + ( exp ‘ 𝐴 ) ) + ( exp ‘ - 𝐴 ) ) = ( ( exp ‘ 𝐴 ) + ( exp ‘ 𝐴 ) ) ) |
| 23 |
15 10 13
|
addassd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) + ( exp ‘ 𝐴 ) ) + ( exp ‘ - 𝐴 ) ) = ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) + ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) ) |
| 24 |
21 22 23
|
3eqtr2rd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) + ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) = ( 2 · ( exp ‘ 𝐴 ) ) ) |
| 25 |
24
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) + ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) / 2 ) = ( ( 2 · ( exp ‘ 𝐴 ) ) / 2 ) ) |
| 26 |
7 20 25
|
3eqtr2d |
⊢ ( 𝐴 ∈ ℂ → ( ( sinh ‘ 𝐴 ) + ( cosh ‘ 𝐴 ) ) = ( ( 2 · ( exp ‘ 𝐴 ) ) / 2 ) ) |
| 27 |
8
|
a1i |
⊢ ( 𝐴 ∈ ℂ → 2 ∈ ℂ ) |
| 28 |
9
|
a1i |
⊢ ( 𝐴 ∈ ℂ → 2 ≠ 0 ) |
| 29 |
10 27 28
|
divcan3d |
⊢ ( 𝐴 ∈ ℂ → ( ( 2 · ( exp ‘ 𝐴 ) ) / 2 ) = ( exp ‘ 𝐴 ) ) |
| 30 |
26 29
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( sinh ‘ 𝐴 ) + ( cosh ‘ 𝐴 ) ) = ( exp ‘ 𝐴 ) ) |