| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sinhval-named | ⊢ ( 𝐴  ∈  ℂ  →  ( sinh ‘ 𝐴 )  =  ( ( sin ‘ ( i  ·  𝐴 ) )  /  i ) ) | 
						
							| 2 |  | sinhval | ⊢ ( 𝐴  ∈  ℂ  →  ( ( sin ‘ ( i  ·  𝐴 ) )  /  i )  =  ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 ) ) | 
						
							| 3 | 1 2 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( sinh ‘ 𝐴 )  =  ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 ) ) | 
						
							| 4 |  | coshval-named | ⊢ ( 𝐴  ∈  ℂ  →  ( cosh ‘ 𝐴 )  =  ( cos ‘ ( i  ·  𝐴 ) ) ) | 
						
							| 5 |  | coshval | ⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ ( i  ·  𝐴 ) )  =  ( ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  /  2 ) ) | 
						
							| 6 | 4 5 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( cosh ‘ 𝐴 )  =  ( ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  /  2 ) ) | 
						
							| 7 | 3 6 | oveq12d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( sinh ‘ 𝐴 )  +  ( cosh ‘ 𝐴 ) )  =  ( ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 )  +  ( ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  /  2 ) ) ) | 
						
							| 8 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 9 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 10 |  | efcl | ⊢ ( 𝐴  ∈  ℂ  →  ( exp ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 11 |  | negcl | ⊢ ( 𝐴  ∈  ℂ  →  - 𝐴  ∈  ℂ ) | 
						
							| 12 |  | efcl | ⊢ ( - 𝐴  ∈  ℂ  →  ( exp ‘ - 𝐴 )  ∈  ℂ ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( exp ‘ - 𝐴 )  ∈  ℂ ) | 
						
							| 14 | 10 13 | addcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  ∈  ℂ ) | 
						
							| 15 | 10 13 | subcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  ∈  ℂ ) | 
						
							| 16 |  | divdir | ⊢ ( ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  ∈  ℂ  ∧  ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 ) )  →  ( ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  +  ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) ) )  /  2 )  =  ( ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 )  +  ( ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  /  2 ) ) ) | 
						
							| 17 | 15 16 | syl3an1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 ) )  →  ( ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  +  ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) ) )  /  2 )  =  ( ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 )  +  ( ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  /  2 ) ) ) | 
						
							| 18 | 14 17 | syl3an2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 ) )  →  ( ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  +  ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) ) )  /  2 )  =  ( ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 )  +  ( ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  /  2 ) ) ) | 
						
							| 19 | 18 | 3anidm12 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 ) )  →  ( ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  +  ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) ) )  /  2 )  =  ( ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 )  +  ( ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  /  2 ) ) ) | 
						
							| 20 | 8 9 19 | mpanr12 | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  +  ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) ) )  /  2 )  =  ( ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  /  2 )  +  ( ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) )  /  2 ) ) ) | 
						
							| 21 | 10 | 2timesd | ⊢ ( 𝐴  ∈  ℂ  →  ( 2  ·  ( exp ‘ 𝐴 ) )  =  ( ( exp ‘ 𝐴 )  +  ( exp ‘ 𝐴 ) ) ) | 
						
							| 22 | 10 13 10 | nppcand | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  +  ( exp ‘ 𝐴 ) )  +  ( exp ‘ - 𝐴 ) )  =  ( ( exp ‘ 𝐴 )  +  ( exp ‘ 𝐴 ) ) ) | 
						
							| 23 | 15 10 13 | addassd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  +  ( exp ‘ 𝐴 ) )  +  ( exp ‘ - 𝐴 ) )  =  ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  +  ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) ) ) ) | 
						
							| 24 | 21 22 23 | 3eqtr2rd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  +  ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) ) )  =  ( 2  ·  ( exp ‘ 𝐴 ) ) ) | 
						
							| 25 | 24 | oveq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( ( exp ‘ 𝐴 )  −  ( exp ‘ - 𝐴 ) )  +  ( ( exp ‘ 𝐴 )  +  ( exp ‘ - 𝐴 ) ) )  /  2 )  =  ( ( 2  ·  ( exp ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 26 | 7 20 25 | 3eqtr2d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( sinh ‘ 𝐴 )  +  ( cosh ‘ 𝐴 ) )  =  ( ( 2  ·  ( exp ‘ 𝐴 ) )  /  2 ) ) | 
						
							| 27 | 8 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  2  ∈  ℂ ) | 
						
							| 28 | 9 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  2  ≠  0 ) | 
						
							| 29 | 10 27 28 | divcan3d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 2  ·  ( exp ‘ 𝐴 ) )  /  2 )  =  ( exp ‘ 𝐴 ) ) | 
						
							| 30 | 26 29 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( sinh ‘ 𝐴 )  +  ( cosh ‘ 𝐴 ) )  =  ( exp ‘ 𝐴 ) ) |