| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sinhval-named | ⊢ ( 𝐴  ∈  ℂ  →  ( sinh ‘ 𝐴 )  =  ( ( sin ‘ ( i  ·  𝐴 ) )  /  i ) ) | 
						
							| 2 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 3 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 4 | 2 3 | mpan | ⊢ ( 𝐴  ∈  ℂ  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 5 | 4 | sincld | ⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ ( i  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 6 |  | ine0 | ⊢ i  ≠  0 | 
						
							| 7 |  | divrec2 | ⊢ ( ( ( sin ‘ ( i  ·  𝐴 ) )  ∈  ℂ  ∧  i  ∈  ℂ  ∧  i  ≠  0 )  →  ( ( sin ‘ ( i  ·  𝐴 ) )  /  i )  =  ( ( 1  /  i )  ·  ( sin ‘ ( i  ·  𝐴 ) ) ) ) | 
						
							| 8 | 2 6 7 | mp3an23 | ⊢ ( ( sin ‘ ( i  ·  𝐴 ) )  ∈  ℂ  →  ( ( sin ‘ ( i  ·  𝐴 ) )  /  i )  =  ( ( 1  /  i )  ·  ( sin ‘ ( i  ·  𝐴 ) ) ) ) | 
						
							| 9 | 5 8 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( ( sin ‘ ( i  ·  𝐴 ) )  /  i )  =  ( ( 1  /  i )  ·  ( sin ‘ ( i  ·  𝐴 ) ) ) ) | 
						
							| 10 |  | irec | ⊢ ( 1  /  i )  =  - i | 
						
							| 11 | 10 | oveq1i | ⊢ ( ( 1  /  i )  ·  ( sin ‘ ( i  ·  𝐴 ) ) )  =  ( - i  ·  ( sin ‘ ( i  ·  𝐴 ) ) ) | 
						
							| 12 | 11 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 1  /  i )  ·  ( sin ‘ ( i  ·  𝐴 ) ) )  =  ( - i  ·  ( sin ‘ ( i  ·  𝐴 ) ) ) ) | 
						
							| 13 | 1 9 12 | 3eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( sinh ‘ 𝐴 )  =  ( - i  ·  ( sin ‘ ( i  ·  𝐴 ) ) ) ) |