Step |
Hyp |
Ref |
Expression |
1 |
|
sinhval-named |
⊢ ( 𝐴 ∈ ℂ → ( sinh ‘ 𝐴 ) = ( ( sin ‘ ( i · 𝐴 ) ) / i ) ) |
2 |
|
ax-icn |
⊢ i ∈ ℂ |
3 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
4 |
2 3
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
5 |
4
|
sincld |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( i · 𝐴 ) ) ∈ ℂ ) |
6 |
|
ine0 |
⊢ i ≠ 0 |
7 |
|
divrec2 |
⊢ ( ( ( sin ‘ ( i · 𝐴 ) ) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0 ) → ( ( sin ‘ ( i · 𝐴 ) ) / i ) = ( ( 1 / i ) · ( sin ‘ ( i · 𝐴 ) ) ) ) |
8 |
2 6 7
|
mp3an23 |
⊢ ( ( sin ‘ ( i · 𝐴 ) ) ∈ ℂ → ( ( sin ‘ ( i · 𝐴 ) ) / i ) = ( ( 1 / i ) · ( sin ‘ ( i · 𝐴 ) ) ) ) |
9 |
5 8
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( i · 𝐴 ) ) / i ) = ( ( 1 / i ) · ( sin ‘ ( i · 𝐴 ) ) ) ) |
10 |
|
irec |
⊢ ( 1 / i ) = - i |
11 |
10
|
oveq1i |
⊢ ( ( 1 / i ) · ( sin ‘ ( i · 𝐴 ) ) ) = ( - i · ( sin ‘ ( i · 𝐴 ) ) ) |
12 |
11
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 / i ) · ( sin ‘ ( i · 𝐴 ) ) ) = ( - i · ( sin ‘ ( i · 𝐴 ) ) ) ) |
13 |
1 9 12
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( sinh ‘ 𝐴 ) = ( - i · ( sin ‘ ( i · 𝐴 ) ) ) ) |