| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cover2g.1 | ⊢ 𝐴  =  ∪  𝐵 | 
						
							| 2 |  | unieq | ⊢ ( 𝑏  =  𝐵  →  ∪  𝑏  =  ∪  𝐵 ) | 
						
							| 3 | 2 1 | eqtr4di | ⊢ ( 𝑏  =  𝐵  →  ∪  𝑏  =  𝐴 ) | 
						
							| 4 |  | rexeq | ⊢ ( 𝑏  =  𝐵  →  ( ∃ 𝑦  ∈  𝑏 ( 𝑥  ∈  𝑦  ∧  𝜑 )  ↔  ∃ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∧  𝜑 ) ) ) | 
						
							| 5 | 3 4 | raleqbidv | ⊢ ( 𝑏  =  𝐵  →  ( ∀ 𝑥  ∈  ∪  𝑏 ∃ 𝑦  ∈  𝑏 ( 𝑥  ∈  𝑦  ∧  𝜑 )  ↔  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∧  𝜑 ) ) ) | 
						
							| 6 |  | pweq | ⊢ ( 𝑏  =  𝐵  →  𝒫  𝑏  =  𝒫  𝐵 ) | 
						
							| 7 | 3 | eqeq2d | ⊢ ( 𝑏  =  𝐵  →  ( ∪  𝑧  =  ∪  𝑏  ↔  ∪  𝑧  =  𝐴 ) ) | 
						
							| 8 | 7 | anbi1d | ⊢ ( 𝑏  =  𝐵  →  ( ( ∪  𝑧  =  ∪  𝑏  ∧  ∀ 𝑦  ∈  𝑧 𝜑 )  ↔  ( ∪  𝑧  =  𝐴  ∧  ∀ 𝑦  ∈  𝑧 𝜑 ) ) ) | 
						
							| 9 | 6 8 | rexeqbidv | ⊢ ( 𝑏  =  𝐵  →  ( ∃ 𝑧  ∈  𝒫  𝑏 ( ∪  𝑧  =  ∪  𝑏  ∧  ∀ 𝑦  ∈  𝑧 𝜑 )  ↔  ∃ 𝑧  ∈  𝒫  𝐵 ( ∪  𝑧  =  𝐴  ∧  ∀ 𝑦  ∈  𝑧 𝜑 ) ) ) | 
						
							| 10 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 11 |  | eqid | ⊢ ∪  𝑏  =  ∪  𝑏 | 
						
							| 12 | 10 11 | cover2 | ⊢ ( ∀ 𝑥  ∈  ∪  𝑏 ∃ 𝑦  ∈  𝑏 ( 𝑥  ∈  𝑦  ∧  𝜑 )  ↔  ∃ 𝑧  ∈  𝒫  𝑏 ( ∪  𝑧  =  ∪  𝑏  ∧  ∀ 𝑦  ∈  𝑧 𝜑 ) ) | 
						
							| 13 | 5 9 12 | vtoclbg | ⊢ ( 𝐵  ∈  𝐶  →  ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∧  𝜑 )  ↔  ∃ 𝑧  ∈  𝒫  𝐵 ( ∪  𝑧  =  𝐴  ∧  ∀ 𝑦  ∈  𝑧 𝜑 ) ) ) |