| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cover2.1 | ⊢ 𝐵  ∈  V | 
						
							| 2 |  | cover2.2 | ⊢ 𝐴  =  ∪  𝐵 | 
						
							| 3 |  | ssrab2 | ⊢ { 𝑦  ∈  𝐵  ∣  𝜑 }  ⊆  𝐵 | 
						
							| 4 | 1 3 | elpwi2 | ⊢ { 𝑦  ∈  𝐵  ∣  𝜑 }  ∈  𝒫  𝐵 | 
						
							| 5 |  | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∧  𝜑 ) | 
						
							| 6 | 3 | unissi | ⊢ ∪  { 𝑦  ∈  𝐵  ∣  𝜑 }  ⊆  ∪  𝐵 | 
						
							| 7 | 6 | sseli | ⊢ ( 𝑥  ∈  ∪  { 𝑦  ∈  𝐵  ∣  𝜑 }  →  𝑥  ∈  ∪  𝐵 ) | 
						
							| 8 | 7 2 | eleqtrrdi | ⊢ ( 𝑥  ∈  ∪  { 𝑦  ∈  𝐵  ∣  𝜑 }  →  𝑥  ∈  𝐴 ) | 
						
							| 9 |  | rsp | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∧  𝜑 )  →  ( 𝑥  ∈  𝐴  →  ∃ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∧  𝜑 ) ) ) | 
						
							| 10 |  | elunirab | ⊢ ( 𝑥  ∈  ∪  { 𝑦  ∈  𝐵  ∣  𝜑 }  ↔  ∃ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∧  𝜑 ) ) | 
						
							| 11 | 9 10 | imbitrrdi | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∧  𝜑 )  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  ∪  { 𝑦  ∈  𝐵  ∣  𝜑 } ) ) | 
						
							| 12 | 8 11 | impbid2 | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∧  𝜑 )  →  ( 𝑥  ∈  ∪  { 𝑦  ∈  𝐵  ∣  𝜑 }  ↔  𝑥  ∈  𝐴 ) ) | 
						
							| 13 | 5 12 | alrimi | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∧  𝜑 )  →  ∀ 𝑥 ( 𝑥  ∈  ∪  { 𝑦  ∈  𝐵  ∣  𝜑 }  ↔  𝑥  ∈  𝐴 ) ) | 
						
							| 14 |  | dfcleq | ⊢ ( ∪  { 𝑦  ∈  𝐵  ∣  𝜑 }  =  𝐴  ↔  ∀ 𝑥 ( 𝑥  ∈  ∪  { 𝑦  ∈  𝐵  ∣  𝜑 }  ↔  𝑥  ∈  𝐴 ) ) | 
						
							| 15 | 13 14 | sylibr | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∧  𝜑 )  →  ∪  { 𝑦  ∈  𝐵  ∣  𝜑 }  =  𝐴 ) | 
						
							| 16 |  | nfrab1 | ⊢ Ⅎ 𝑦 { 𝑦  ∈  𝐵  ∣  𝜑 } | 
						
							| 17 | 16 | nfeq2 | ⊢ Ⅎ 𝑦 𝑧  =  { 𝑦  ∈  𝐵  ∣  𝜑 } | 
						
							| 18 |  | eleq2 | ⊢ ( 𝑧  =  { 𝑦  ∈  𝐵  ∣  𝜑 }  →  ( 𝑦  ∈  𝑧  ↔  𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝜑 } ) ) | 
						
							| 19 |  | rabid | ⊢ ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝜑 }  ↔  ( 𝑦  ∈  𝐵  ∧  𝜑 ) ) | 
						
							| 20 | 19 | simprbi | ⊢ ( 𝑦  ∈  { 𝑦  ∈  𝐵  ∣  𝜑 }  →  𝜑 ) | 
						
							| 21 | 18 20 | biimtrdi | ⊢ ( 𝑧  =  { 𝑦  ∈  𝐵  ∣  𝜑 }  →  ( 𝑦  ∈  𝑧  →  𝜑 ) ) | 
						
							| 22 | 17 21 | ralrimi | ⊢ ( 𝑧  =  { 𝑦  ∈  𝐵  ∣  𝜑 }  →  ∀ 𝑦  ∈  𝑧 𝜑 ) | 
						
							| 23 |  | unieq | ⊢ ( 𝑧  =  { 𝑦  ∈  𝐵  ∣  𝜑 }  →  ∪  𝑧  =  ∪  { 𝑦  ∈  𝐵  ∣  𝜑 } ) | 
						
							| 24 | 23 | eqeq1d | ⊢ ( 𝑧  =  { 𝑦  ∈  𝐵  ∣  𝜑 }  →  ( ∪  𝑧  =  𝐴  ↔  ∪  { 𝑦  ∈  𝐵  ∣  𝜑 }  =  𝐴 ) ) | 
						
							| 25 | 24 | anbi1d | ⊢ ( 𝑧  =  { 𝑦  ∈  𝐵  ∣  𝜑 }  →  ( ( ∪  𝑧  =  𝐴  ∧  ∀ 𝑦  ∈  𝑧 𝜑 )  ↔  ( ∪  { 𝑦  ∈  𝐵  ∣  𝜑 }  =  𝐴  ∧  ∀ 𝑦  ∈  𝑧 𝜑 ) ) ) | 
						
							| 26 | 22 25 | mpbiran2d | ⊢ ( 𝑧  =  { 𝑦  ∈  𝐵  ∣  𝜑 }  →  ( ( ∪  𝑧  =  𝐴  ∧  ∀ 𝑦  ∈  𝑧 𝜑 )  ↔  ∪  { 𝑦  ∈  𝐵  ∣  𝜑 }  =  𝐴 ) ) | 
						
							| 27 | 26 | rspcev | ⊢ ( ( { 𝑦  ∈  𝐵  ∣  𝜑 }  ∈  𝒫  𝐵  ∧  ∪  { 𝑦  ∈  𝐵  ∣  𝜑 }  =  𝐴 )  →  ∃ 𝑧  ∈  𝒫  𝐵 ( ∪  𝑧  =  𝐴  ∧  ∀ 𝑦  ∈  𝑧 𝜑 ) ) | 
						
							| 28 | 4 15 27 | sylancr | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∧  𝜑 )  →  ∃ 𝑧  ∈  𝒫  𝐵 ( ∪  𝑧  =  𝐴  ∧  ∀ 𝑦  ∈  𝑧 𝜑 ) ) | 
						
							| 29 |  | elpwi | ⊢ ( 𝑧  ∈  𝒫  𝐵  →  𝑧  ⊆  𝐵 ) | 
						
							| 30 |  | r19.29r | ⊢ ( ( ∃ 𝑦  ∈  𝑧 𝑥  ∈  𝑦  ∧  ∀ 𝑦  ∈  𝑧 𝜑 )  →  ∃ 𝑦  ∈  𝑧 ( 𝑥  ∈  𝑦  ∧  𝜑 ) ) | 
						
							| 31 | 30 | expcom | ⊢ ( ∀ 𝑦  ∈  𝑧 𝜑  →  ( ∃ 𝑦  ∈  𝑧 𝑥  ∈  𝑦  →  ∃ 𝑦  ∈  𝑧 ( 𝑥  ∈  𝑦  ∧  𝜑 ) ) ) | 
						
							| 32 |  | ssrexv | ⊢ ( 𝑧  ⊆  𝐵  →  ( ∃ 𝑦  ∈  𝑧 ( 𝑥  ∈  𝑦  ∧  𝜑 )  →  ∃ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∧  𝜑 ) ) ) | 
						
							| 33 | 31 32 | sylan9r | ⊢ ( ( 𝑧  ⊆  𝐵  ∧  ∀ 𝑦  ∈  𝑧 𝜑 )  →  ( ∃ 𝑦  ∈  𝑧 𝑥  ∈  𝑦  →  ∃ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∧  𝜑 ) ) ) | 
						
							| 34 | 29 33 | sylan | ⊢ ( ( 𝑧  ∈  𝒫  𝐵  ∧  ∀ 𝑦  ∈  𝑧 𝜑 )  →  ( ∃ 𝑦  ∈  𝑧 𝑥  ∈  𝑦  →  ∃ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∧  𝜑 ) ) ) | 
						
							| 35 |  | eleq2 | ⊢ ( ∪  𝑧  =  𝐴  →  ( 𝑥  ∈  ∪  𝑧  ↔  𝑥  ∈  𝐴 ) ) | 
						
							| 36 | 35 | biimpar | ⊢ ( ( ∪  𝑧  =  𝐴  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ∪  𝑧 ) | 
						
							| 37 |  | eluni2 | ⊢ ( 𝑥  ∈  ∪  𝑧  ↔  ∃ 𝑦  ∈  𝑧 𝑥  ∈  𝑦 ) | 
						
							| 38 | 36 37 | sylib | ⊢ ( ( ∪  𝑧  =  𝐴  ∧  𝑥  ∈  𝐴 )  →  ∃ 𝑦  ∈  𝑧 𝑥  ∈  𝑦 ) | 
						
							| 39 | 34 38 | impel | ⊢ ( ( ( 𝑧  ∈  𝒫  𝐵  ∧  ∀ 𝑦  ∈  𝑧 𝜑 )  ∧  ( ∪  𝑧  =  𝐴  ∧  𝑥  ∈  𝐴 ) )  →  ∃ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∧  𝜑 ) ) | 
						
							| 40 | 39 | anassrs | ⊢ ( ( ( ( 𝑧  ∈  𝒫  𝐵  ∧  ∀ 𝑦  ∈  𝑧 𝜑 )  ∧  ∪  𝑧  =  𝐴 )  ∧  𝑥  ∈  𝐴 )  →  ∃ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∧  𝜑 ) ) | 
						
							| 41 | 40 | ralrimiva | ⊢ ( ( ( 𝑧  ∈  𝒫  𝐵  ∧  ∀ 𝑦  ∈  𝑧 𝜑 )  ∧  ∪  𝑧  =  𝐴 )  →  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∧  𝜑 ) ) | 
						
							| 42 | 41 | anasss | ⊢ ( ( 𝑧  ∈  𝒫  𝐵  ∧  ( ∀ 𝑦  ∈  𝑧 𝜑  ∧  ∪  𝑧  =  𝐴 ) )  →  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∧  𝜑 ) ) | 
						
							| 43 | 42 | ancom2s | ⊢ ( ( 𝑧  ∈  𝒫  𝐵  ∧  ( ∪  𝑧  =  𝐴  ∧  ∀ 𝑦  ∈  𝑧 𝜑 ) )  →  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∧  𝜑 ) ) | 
						
							| 44 | 43 | rexlimiva | ⊢ ( ∃ 𝑧  ∈  𝒫  𝐵 ( ∪  𝑧  =  𝐴  ∧  ∀ 𝑦  ∈  𝑧 𝜑 )  →  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∧  𝜑 ) ) | 
						
							| 45 | 28 44 | impbii | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝑦  ∧  𝜑 )  ↔  ∃ 𝑧  ∈  𝒫  𝐵 ( ∪  𝑧  =  𝐴  ∧  ∀ 𝑦  ∈  𝑧 𝜑 ) ) |