Metamath Proof Explorer


Theorem cover2

Description: Two ways of expressing the statement "there is a cover of A by elements of B such that for each set in the cover, ph ". Note that ph and x must be distinct. (Contributed by Jeff Madsen, 20-Jun-2010)

Ref Expression
Hypotheses cover2.1 𝐵 ∈ V
cover2.2 𝐴 = 𝐵
Assertion cover2 ( ∀ 𝑥𝐴𝑦𝐵 ( 𝑥𝑦𝜑 ) ↔ ∃ 𝑧 ∈ 𝒫 𝐵 ( 𝑧 = 𝐴 ∧ ∀ 𝑦𝑧 𝜑 ) )

Proof

Step Hyp Ref Expression
1 cover2.1 𝐵 ∈ V
2 cover2.2 𝐴 = 𝐵
3 ssrab2 { 𝑦𝐵𝜑 } ⊆ 𝐵
4 1 3 elpwi2 { 𝑦𝐵𝜑 } ∈ 𝒫 𝐵
5 nfra1 𝑥𝑥𝐴𝑦𝐵 ( 𝑥𝑦𝜑 )
6 3 unissi { 𝑦𝐵𝜑 } ⊆ 𝐵
7 6 sseli ( 𝑥 { 𝑦𝐵𝜑 } → 𝑥 𝐵 )
8 7 2 eleqtrrdi ( 𝑥 { 𝑦𝐵𝜑 } → 𝑥𝐴 )
9 rsp ( ∀ 𝑥𝐴𝑦𝐵 ( 𝑥𝑦𝜑 ) → ( 𝑥𝐴 → ∃ 𝑦𝐵 ( 𝑥𝑦𝜑 ) ) )
10 elunirab ( 𝑥 { 𝑦𝐵𝜑 } ↔ ∃ 𝑦𝐵 ( 𝑥𝑦𝜑 ) )
11 9 10 syl6ibr ( ∀ 𝑥𝐴𝑦𝐵 ( 𝑥𝑦𝜑 ) → ( 𝑥𝐴𝑥 { 𝑦𝐵𝜑 } ) )
12 8 11 impbid2 ( ∀ 𝑥𝐴𝑦𝐵 ( 𝑥𝑦𝜑 ) → ( 𝑥 { 𝑦𝐵𝜑 } ↔ 𝑥𝐴 ) )
13 5 12 alrimi ( ∀ 𝑥𝐴𝑦𝐵 ( 𝑥𝑦𝜑 ) → ∀ 𝑥 ( 𝑥 { 𝑦𝐵𝜑 } ↔ 𝑥𝐴 ) )
14 dfcleq ( { 𝑦𝐵𝜑 } = 𝐴 ↔ ∀ 𝑥 ( 𝑥 { 𝑦𝐵𝜑 } ↔ 𝑥𝐴 ) )
15 13 14 sylibr ( ∀ 𝑥𝐴𝑦𝐵 ( 𝑥𝑦𝜑 ) → { 𝑦𝐵𝜑 } = 𝐴 )
16 nfrab1 𝑦 { 𝑦𝐵𝜑 }
17 16 nfeq2 𝑦 𝑧 = { 𝑦𝐵𝜑 }
18 eleq2 ( 𝑧 = { 𝑦𝐵𝜑 } → ( 𝑦𝑧𝑦 ∈ { 𝑦𝐵𝜑 } ) )
19 rabid ( 𝑦 ∈ { 𝑦𝐵𝜑 } ↔ ( 𝑦𝐵𝜑 ) )
20 19 simprbi ( 𝑦 ∈ { 𝑦𝐵𝜑 } → 𝜑 )
21 18 20 syl6bi ( 𝑧 = { 𝑦𝐵𝜑 } → ( 𝑦𝑧𝜑 ) )
22 17 21 ralrimi ( 𝑧 = { 𝑦𝐵𝜑 } → ∀ 𝑦𝑧 𝜑 )
23 unieq ( 𝑧 = { 𝑦𝐵𝜑 } → 𝑧 = { 𝑦𝐵𝜑 } )
24 23 eqeq1d ( 𝑧 = { 𝑦𝐵𝜑 } → ( 𝑧 = 𝐴 { 𝑦𝐵𝜑 } = 𝐴 ) )
25 24 anbi1d ( 𝑧 = { 𝑦𝐵𝜑 } → ( ( 𝑧 = 𝐴 ∧ ∀ 𝑦𝑧 𝜑 ) ↔ ( { 𝑦𝐵𝜑 } = 𝐴 ∧ ∀ 𝑦𝑧 𝜑 ) ) )
26 22 25 mpbiran2d ( 𝑧 = { 𝑦𝐵𝜑 } → ( ( 𝑧 = 𝐴 ∧ ∀ 𝑦𝑧 𝜑 ) ↔ { 𝑦𝐵𝜑 } = 𝐴 ) )
27 26 rspcev ( ( { 𝑦𝐵𝜑 } ∈ 𝒫 𝐵 { 𝑦𝐵𝜑 } = 𝐴 ) → ∃ 𝑧 ∈ 𝒫 𝐵 ( 𝑧 = 𝐴 ∧ ∀ 𝑦𝑧 𝜑 ) )
28 4 15 27 sylancr ( ∀ 𝑥𝐴𝑦𝐵 ( 𝑥𝑦𝜑 ) → ∃ 𝑧 ∈ 𝒫 𝐵 ( 𝑧 = 𝐴 ∧ ∀ 𝑦𝑧 𝜑 ) )
29 elpwi ( 𝑧 ∈ 𝒫 𝐵𝑧𝐵 )
30 r19.29r ( ( ∃ 𝑦𝑧 𝑥𝑦 ∧ ∀ 𝑦𝑧 𝜑 ) → ∃ 𝑦𝑧 ( 𝑥𝑦𝜑 ) )
31 30 expcom ( ∀ 𝑦𝑧 𝜑 → ( ∃ 𝑦𝑧 𝑥𝑦 → ∃ 𝑦𝑧 ( 𝑥𝑦𝜑 ) ) )
32 ssrexv ( 𝑧𝐵 → ( ∃ 𝑦𝑧 ( 𝑥𝑦𝜑 ) → ∃ 𝑦𝐵 ( 𝑥𝑦𝜑 ) ) )
33 31 32 sylan9r ( ( 𝑧𝐵 ∧ ∀ 𝑦𝑧 𝜑 ) → ( ∃ 𝑦𝑧 𝑥𝑦 → ∃ 𝑦𝐵 ( 𝑥𝑦𝜑 ) ) )
34 29 33 sylan ( ( 𝑧 ∈ 𝒫 𝐵 ∧ ∀ 𝑦𝑧 𝜑 ) → ( ∃ 𝑦𝑧 𝑥𝑦 → ∃ 𝑦𝐵 ( 𝑥𝑦𝜑 ) ) )
35 eleq2 ( 𝑧 = 𝐴 → ( 𝑥 𝑧𝑥𝐴 ) )
36 35 biimpar ( ( 𝑧 = 𝐴𝑥𝐴 ) → 𝑥 𝑧 )
37 eluni2 ( 𝑥 𝑧 ↔ ∃ 𝑦𝑧 𝑥𝑦 )
38 36 37 sylib ( ( 𝑧 = 𝐴𝑥𝐴 ) → ∃ 𝑦𝑧 𝑥𝑦 )
39 34 38 impel ( ( ( 𝑧 ∈ 𝒫 𝐵 ∧ ∀ 𝑦𝑧 𝜑 ) ∧ ( 𝑧 = 𝐴𝑥𝐴 ) ) → ∃ 𝑦𝐵 ( 𝑥𝑦𝜑 ) )
40 39 anassrs ( ( ( ( 𝑧 ∈ 𝒫 𝐵 ∧ ∀ 𝑦𝑧 𝜑 ) ∧ 𝑧 = 𝐴 ) ∧ 𝑥𝐴 ) → ∃ 𝑦𝐵 ( 𝑥𝑦𝜑 ) )
41 40 ralrimiva ( ( ( 𝑧 ∈ 𝒫 𝐵 ∧ ∀ 𝑦𝑧 𝜑 ) ∧ 𝑧 = 𝐴 ) → ∀ 𝑥𝐴𝑦𝐵 ( 𝑥𝑦𝜑 ) )
42 41 anasss ( ( 𝑧 ∈ 𝒫 𝐵 ∧ ( ∀ 𝑦𝑧 𝜑 𝑧 = 𝐴 ) ) → ∀ 𝑥𝐴𝑦𝐵 ( 𝑥𝑦𝜑 ) )
43 42 ancom2s ( ( 𝑧 ∈ 𝒫 𝐵 ∧ ( 𝑧 = 𝐴 ∧ ∀ 𝑦𝑧 𝜑 ) ) → ∀ 𝑥𝐴𝑦𝐵 ( 𝑥𝑦𝜑 ) )
44 43 rexlimiva ( ∃ 𝑧 ∈ 𝒫 𝐵 ( 𝑧 = 𝐴 ∧ ∀ 𝑦𝑧 𝜑 ) → ∀ 𝑥𝐴𝑦𝐵 ( 𝑥𝑦𝜑 ) )
45 28 44 impbii ( ∀ 𝑥𝐴𝑦𝐵 ( 𝑥𝑦𝜑 ) ↔ ∃ 𝑧 ∈ 𝒫 𝐵 ( 𝑧 = 𝐴 ∧ ∀ 𝑦𝑧 𝜑 ) )