Step |
Hyp |
Ref |
Expression |
1 |
|
cover2.1 |
⊢ 𝐵 ∈ V |
2 |
|
cover2.2 |
⊢ 𝐴 = ∪ 𝐵 |
3 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ⊆ 𝐵 |
4 |
1 3
|
elpwi2 |
⊢ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ 𝒫 𝐵 |
5 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) |
6 |
3
|
unissi |
⊢ ∪ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ⊆ ∪ 𝐵 |
7 |
6
|
sseli |
⊢ ( 𝑥 ∈ ∪ { 𝑦 ∈ 𝐵 ∣ 𝜑 } → 𝑥 ∈ ∪ 𝐵 ) |
8 |
7 2
|
eleqtrrdi |
⊢ ( 𝑥 ∈ ∪ { 𝑦 ∈ 𝐵 ∣ 𝜑 } → 𝑥 ∈ 𝐴 ) |
9 |
|
rsp |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐴 → ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) ) |
10 |
|
elunirab |
⊢ ( 𝑥 ∈ ∪ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ↔ ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) |
11 |
9 10
|
syl6ibr |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) |
12 |
8 11
|
impbid2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) → ( 𝑥 ∈ ∪ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ↔ 𝑥 ∈ 𝐴 ) ) |
13 |
5 12
|
alrimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) → ∀ 𝑥 ( 𝑥 ∈ ∪ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ↔ 𝑥 ∈ 𝐴 ) ) |
14 |
|
dfcleq |
⊢ ( ∪ { 𝑦 ∈ 𝐵 ∣ 𝜑 } = 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ ∪ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ↔ 𝑥 ∈ 𝐴 ) ) |
15 |
13 14
|
sylibr |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) → ∪ { 𝑦 ∈ 𝐵 ∣ 𝜑 } = 𝐴 ) |
16 |
|
nfrab1 |
⊢ Ⅎ 𝑦 { 𝑦 ∈ 𝐵 ∣ 𝜑 } |
17 |
16
|
nfeq2 |
⊢ Ⅎ 𝑦 𝑧 = { 𝑦 ∈ 𝐵 ∣ 𝜑 } |
18 |
|
eleq2 |
⊢ ( 𝑧 = { 𝑦 ∈ 𝐵 ∣ 𝜑 } → ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) ) |
19 |
|
rabid |
⊢ ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ↔ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
20 |
19
|
simprbi |
⊢ ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } → 𝜑 ) |
21 |
18 20
|
syl6bi |
⊢ ( 𝑧 = { 𝑦 ∈ 𝐵 ∣ 𝜑 } → ( 𝑦 ∈ 𝑧 → 𝜑 ) ) |
22 |
17 21
|
ralrimi |
⊢ ( 𝑧 = { 𝑦 ∈ 𝐵 ∣ 𝜑 } → ∀ 𝑦 ∈ 𝑧 𝜑 ) |
23 |
|
unieq |
⊢ ( 𝑧 = { 𝑦 ∈ 𝐵 ∣ 𝜑 } → ∪ 𝑧 = ∪ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ) |
24 |
23
|
eqeq1d |
⊢ ( 𝑧 = { 𝑦 ∈ 𝐵 ∣ 𝜑 } → ( ∪ 𝑧 = 𝐴 ↔ ∪ { 𝑦 ∈ 𝐵 ∣ 𝜑 } = 𝐴 ) ) |
25 |
24
|
anbi1d |
⊢ ( 𝑧 = { 𝑦 ∈ 𝐵 ∣ 𝜑 } → ( ( ∪ 𝑧 = 𝐴 ∧ ∀ 𝑦 ∈ 𝑧 𝜑 ) ↔ ( ∪ { 𝑦 ∈ 𝐵 ∣ 𝜑 } = 𝐴 ∧ ∀ 𝑦 ∈ 𝑧 𝜑 ) ) ) |
26 |
22 25
|
mpbiran2d |
⊢ ( 𝑧 = { 𝑦 ∈ 𝐵 ∣ 𝜑 } → ( ( ∪ 𝑧 = 𝐴 ∧ ∀ 𝑦 ∈ 𝑧 𝜑 ) ↔ ∪ { 𝑦 ∈ 𝐵 ∣ 𝜑 } = 𝐴 ) ) |
27 |
26
|
rspcev |
⊢ ( ( { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∈ 𝒫 𝐵 ∧ ∪ { 𝑦 ∈ 𝐵 ∣ 𝜑 } = 𝐴 ) → ∃ 𝑧 ∈ 𝒫 𝐵 ( ∪ 𝑧 = 𝐴 ∧ ∀ 𝑦 ∈ 𝑧 𝜑 ) ) |
28 |
4 15 27
|
sylancr |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) → ∃ 𝑧 ∈ 𝒫 𝐵 ( ∪ 𝑧 = 𝐴 ∧ ∀ 𝑦 ∈ 𝑧 𝜑 ) ) |
29 |
|
elpwi |
⊢ ( 𝑧 ∈ 𝒫 𝐵 → 𝑧 ⊆ 𝐵 ) |
30 |
|
r19.29r |
⊢ ( ( ∃ 𝑦 ∈ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 ∈ 𝑧 𝜑 ) → ∃ 𝑦 ∈ 𝑧 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) |
31 |
30
|
expcom |
⊢ ( ∀ 𝑦 ∈ 𝑧 𝜑 → ( ∃ 𝑦 ∈ 𝑧 𝑥 ∈ 𝑦 → ∃ 𝑦 ∈ 𝑧 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) ) |
32 |
|
ssrexv |
⊢ ( 𝑧 ⊆ 𝐵 → ( ∃ 𝑦 ∈ 𝑧 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) ) |
33 |
31 32
|
sylan9r |
⊢ ( ( 𝑧 ⊆ 𝐵 ∧ ∀ 𝑦 ∈ 𝑧 𝜑 ) → ( ∃ 𝑦 ∈ 𝑧 𝑥 ∈ 𝑦 → ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) ) |
34 |
29 33
|
sylan |
⊢ ( ( 𝑧 ∈ 𝒫 𝐵 ∧ ∀ 𝑦 ∈ 𝑧 𝜑 ) → ( ∃ 𝑦 ∈ 𝑧 𝑥 ∈ 𝑦 → ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) ) |
35 |
|
eleq2 |
⊢ ( ∪ 𝑧 = 𝐴 → ( 𝑥 ∈ ∪ 𝑧 ↔ 𝑥 ∈ 𝐴 ) ) |
36 |
35
|
biimpar |
⊢ ( ( ∪ 𝑧 = 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ∪ 𝑧 ) |
37 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ 𝑧 ↔ ∃ 𝑦 ∈ 𝑧 𝑥 ∈ 𝑦 ) |
38 |
36 37
|
sylib |
⊢ ( ( ∪ 𝑧 = 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝑧 𝑥 ∈ 𝑦 ) |
39 |
34 38
|
impel |
⊢ ( ( ( 𝑧 ∈ 𝒫 𝐵 ∧ ∀ 𝑦 ∈ 𝑧 𝜑 ) ∧ ( ∪ 𝑧 = 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) |
40 |
39
|
anassrs |
⊢ ( ( ( ( 𝑧 ∈ 𝒫 𝐵 ∧ ∀ 𝑦 ∈ 𝑧 𝜑 ) ∧ ∪ 𝑧 = 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) |
41 |
40
|
ralrimiva |
⊢ ( ( ( 𝑧 ∈ 𝒫 𝐵 ∧ ∀ 𝑦 ∈ 𝑧 𝜑 ) ∧ ∪ 𝑧 = 𝐴 ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) |
42 |
41
|
anasss |
⊢ ( ( 𝑧 ∈ 𝒫 𝐵 ∧ ( ∀ 𝑦 ∈ 𝑧 𝜑 ∧ ∪ 𝑧 = 𝐴 ) ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) |
43 |
42
|
ancom2s |
⊢ ( ( 𝑧 ∈ 𝒫 𝐵 ∧ ( ∪ 𝑧 = 𝐴 ∧ ∀ 𝑦 ∈ 𝑧 𝜑 ) ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) |
44 |
43
|
rexlimiva |
⊢ ( ∃ 𝑧 ∈ 𝒫 𝐵 ( ∪ 𝑧 = 𝐴 ∧ ∀ 𝑦 ∈ 𝑧 𝜑 ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) |
45 |
28 44
|
impbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ↔ ∃ 𝑧 ∈ 𝒫 𝐵 ( ∪ 𝑧 = 𝐴 ∧ ∀ 𝑦 ∈ 𝑧 𝜑 ) ) |