| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpmat.s | ⊢ 𝑆  =  ( 𝑁  ConstPolyMat  𝑅 ) | 
						
							| 2 |  | cpmat.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 3 |  | cpmat.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 4 |  | cpmat.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 5 |  | cpmatel2.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 6 |  | cpmatel2.a | ⊢ 𝐴  =  ( algSc ‘ 𝑃 ) | 
						
							| 7 | 1 2 3 4 | cpmatpmat | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝑆 )  →  𝑀  ∈  𝐵 ) | 
						
							| 8 | 7 | 3expa | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑀  ∈  𝑆 )  →  𝑀  ∈  𝐵 ) | 
						
							| 9 | 1 2 3 4 5 6 | cpmatel2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑀  ∈  𝑆  ↔  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∃ 𝑘  ∈  𝐾 ( 𝑖 𝑀 𝑗 )  =  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 10 | 9 | 3expa | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑀  ∈  𝐵 )  →  ( 𝑀  ∈  𝑆  ↔  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∃ 𝑘  ∈  𝐾 ( 𝑖 𝑀 𝑗 )  =  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 11 | 10 | biimpd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑀  ∈  𝐵 )  →  ( 𝑀  ∈  𝑆  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∃ 𝑘  ∈  𝐾 ( 𝑖 𝑀 𝑗 )  =  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 12 | 11 | impancom | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑀  ∈  𝑆 )  →  ( 𝑀  ∈  𝐵  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∃ 𝑘  ∈  𝐾 ( 𝑖 𝑀 𝑗 )  =  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 13 | 8 12 | jcai | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑀  ∈  𝑆 )  →  ( 𝑀  ∈  𝐵  ∧  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∃ 𝑘  ∈  𝐾 ( 𝑖 𝑀 𝑗 )  =  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 14 | 13 | ex | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑀  ∈  𝑆  →  ( 𝑀  ∈  𝐵  ∧  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ∃ 𝑘  ∈  𝐾 ( 𝑖 𝑀 𝑗 )  =  ( 𝐴 ‘ 𝑘 ) ) ) ) |