Metamath Proof Explorer


Theorem cpmatelimp2

Description: Another implication of a set being a constant polynomial matrix. (Contributed by AV, 17-Nov-2019)

Ref Expression
Hypotheses cpmat.s S=NConstPolyMatR
cpmat.p P=Poly1R
cpmat.c C=NMatP
cpmat.b B=BaseC
cpmatel2.k K=BaseR
cpmatel2.a A=algScP
Assertion cpmatelimp2 NFinRRingMSMBiNjNkKiMj=Ak

Proof

Step Hyp Ref Expression
1 cpmat.s S=NConstPolyMatR
2 cpmat.p P=Poly1R
3 cpmat.c C=NMatP
4 cpmat.b B=BaseC
5 cpmatel2.k K=BaseR
6 cpmatel2.a A=algScP
7 1 2 3 4 cpmatpmat NFinRRingMSMB
8 7 3expa NFinRRingMSMB
9 1 2 3 4 5 6 cpmatel2 NFinRRingMBMSiNjNkKiMj=Ak
10 9 3expa NFinRRingMBMSiNjNkKiMj=Ak
11 10 biimpd NFinRRingMBMSiNjNkKiMj=Ak
12 11 impancom NFinRRingMSMBiNjNkKiMj=Ak
13 8 12 jcai NFinRRingMSMBiNjNkKiMj=Ak
14 13 ex NFinRRingMSMBiNjNkKiMj=Ak