Metamath Proof Explorer


Theorem cpmatel2

Description: Another property of a constant polynomial matrix. (Contributed by AV, 16-Nov-2019) (Proof shortened by AV, 27-Nov-2019)

Ref Expression
Hypotheses cpmat.s S = N ConstPolyMat R
cpmat.p P = Poly 1 R
cpmat.c C = N Mat P
cpmat.b B = Base C
cpmatel2.k K = Base R
cpmatel2.a A = algSc P
Assertion cpmatel2 N Fin R Ring M B M S i N j N k K i M j = A k

Proof

Step Hyp Ref Expression
1 cpmat.s S = N ConstPolyMat R
2 cpmat.p P = Poly 1 R
3 cpmat.c C = N Mat P
4 cpmat.b B = Base C
5 cpmatel2.k K = Base R
6 cpmatel2.a A = algSc P
7 1 2 3 4 cpmatel N Fin R Ring M B M S i N j N l coe 1 i M j l = 0 R
8 simpl2 N Fin R Ring M B i N j N R Ring
9 eqid Base P = Base P
10 simprl N Fin R Ring M B i N j N i N
11 simprr N Fin R Ring M B i N j N j N
12 simpl3 N Fin R Ring M B i N j N M B
13 3 9 4 10 11 12 matecld N Fin R Ring M B i N j N i M j Base P
14 eqid 0 R = 0 R
15 5 14 2 9 6 cply1coe0bi R Ring i M j Base P k K i M j = A k l coe 1 i M j l = 0 R
16 8 13 15 syl2anc N Fin R Ring M B i N j N k K i M j = A k l coe 1 i M j l = 0 R
17 16 bicomd N Fin R Ring M B i N j N l coe 1 i M j l = 0 R k K i M j = A k
18 17 2ralbidva N Fin R Ring M B i N j N l coe 1 i M j l = 0 R i N j N k K i M j = A k
19 7 18 bitrd N Fin R Ring M B M S i N j N k K i M j = A k