| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cply1coe0.k |
|
| 2 |
|
cply1coe0.0 |
|
| 3 |
|
cply1coe0.p |
|
| 4 |
|
cply1coe0.b |
|
| 5 |
|
cply1coe0.a |
|
| 6 |
1 2 3 4 5
|
cply1coe0 |
|
| 7 |
6
|
ad4ant13 |
|
| 8 |
|
fveq2 |
|
| 9 |
8
|
fveq1d |
|
| 10 |
9
|
eqeq1d |
|
| 11 |
10
|
ralbidv |
|
| 12 |
11
|
adantl |
|
| 13 |
7 12
|
mpbird |
|
| 14 |
13
|
rexlimdva2 |
|
| 15 |
|
simpr |
|
| 16 |
|
0nn0 |
|
| 17 |
|
eqid |
|
| 18 |
17 4 3 1
|
coe1fvalcl |
|
| 19 |
15 16 18
|
sylancl |
|
| 20 |
19
|
adantr |
|
| 21 |
|
fveq2 |
|
| 22 |
21
|
eqeq2d |
|
| 23 |
22
|
adantl |
|
| 24 |
|
simpl |
|
| 25 |
|
eqid |
|
| 26 |
3
|
ply1ring |
|
| 27 |
3
|
ply1lmod |
|
| 28 |
|
eqid |
|
| 29 |
5 25 26 27 28 4
|
asclf |
|
| 30 |
29
|
adantr |
|
| 31 |
|
eqid |
|
| 32 |
17 4 3 31
|
coe1fvalcl |
|
| 33 |
15 16 32
|
sylancl |
|
| 34 |
3
|
ply1sca |
|
| 35 |
34
|
eqcomd |
|
| 36 |
35
|
fveq2d |
|
| 37 |
36
|
adantr |
|
| 38 |
33 37
|
eleqtrrd |
|
| 39 |
30 38
|
ffvelcdmd |
|
| 40 |
24 15 39
|
3jca |
|
| 41 |
40
|
adantr |
|
| 42 |
|
simpr |
|
| 43 |
3 5 1 2
|
coe1scl |
|
| 44 |
19 43
|
syldan |
|
| 45 |
44
|
adantr |
|
| 46 |
|
nnne0 |
|
| 47 |
46
|
neneqd |
|
| 48 |
47
|
adantl |
|
| 49 |
48
|
adantr |
|
| 50 |
|
eqeq1 |
|
| 51 |
50
|
notbid |
|
| 52 |
51
|
adantl |
|
| 53 |
49 52
|
mpbird |
|
| 54 |
53
|
iffalsed |
|
| 55 |
|
nnnn0 |
|
| 56 |
55
|
adantl |
|
| 57 |
2
|
fvexi |
|
| 58 |
57
|
a1i |
|
| 59 |
45 54 56 58
|
fvmptd |
|
| 60 |
59
|
eqcomd |
|
| 61 |
60
|
adantr |
|
| 62 |
42 61
|
eqtrd |
|
| 63 |
62
|
ex |
|
| 64 |
63
|
ralimdva |
|
| 65 |
64
|
imp |
|
| 66 |
3 5 1
|
ply1sclid |
|
| 67 |
19 66
|
syldan |
|
| 68 |
67
|
adantr |
|
| 69 |
|
df-n0 |
|
| 70 |
69
|
raleqi |
|
| 71 |
|
c0ex |
|
| 72 |
|
fveq2 |
|
| 73 |
|
fveq2 |
|
| 74 |
72 73
|
eqeq12d |
|
| 75 |
74
|
ralunsn |
|
| 76 |
71 75
|
mp1i |
|
| 77 |
70 76
|
bitrid |
|
| 78 |
65 68 77
|
mpbir2and |
|
| 79 |
|
eqid |
|
| 80 |
3 4 17 79
|
eqcoe1ply1eq |
|
| 81 |
41 78 80
|
sylc |
|
| 82 |
20 23 81
|
rspcedvd |
|
| 83 |
82
|
ex |
|
| 84 |
14 83
|
impbid |
|