Description: Two polynomials over the same ring are equal if they have identical coefficients. (Contributed by AV, 7-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqcoe1ply1eq.p | |
|
eqcoe1ply1eq.b | |
||
eqcoe1ply1eq.a | |
||
eqcoe1ply1eq.c | |
||
Assertion | eqcoe1ply1eq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcoe1ply1eq.p | |
|
2 | eqcoe1ply1eq.b | |
|
3 | eqcoe1ply1eq.a | |
|
4 | eqcoe1ply1eq.c | |
|
5 | fveq2 | |
|
6 | fveq2 | |
|
7 | 5 6 | eqeq12d | |
8 | 7 | rspccv | |
9 | 8 | adantl | |
10 | 9 | imp | |
11 | 3 | fveq1i | |
12 | 4 | fveq1i | |
13 | 10 11 12 | 3eqtr3g | |
14 | 13 | oveq1d | |
15 | 14 | mpteq2dva | |
16 | 15 | oveq2d | |
17 | eqid | |
|
18 | eqid | |
|
19 | eqid | |
|
20 | eqid | |
|
21 | eqid | |
|
22 | 1 17 2 18 19 20 21 | ply1coe | |
23 | 22 | 3adant3 | |
24 | eqid | |
|
25 | 1 17 2 18 19 20 24 | ply1coe | |
26 | 25 | 3adant2 | |
27 | 23 26 | eqeq12d | |
28 | 27 | adantr | |
29 | 16 28 | mpbird | |
30 | 29 | ex | |