Metamath Proof Explorer


Theorem eqcoe1ply1eq

Description: Two polynomials over the same ring are equal if they have identical coefficients. (Contributed by AV, 7-Oct-2019)

Ref Expression
Hypotheses eqcoe1ply1eq.p P=Poly1R
eqcoe1ply1eq.b B=BaseP
eqcoe1ply1eq.a A=coe1K
eqcoe1ply1eq.c C=coe1L
Assertion eqcoe1ply1eq RRingKBLBk0Ak=CkK=L

Proof

Step Hyp Ref Expression
1 eqcoe1ply1eq.p P=Poly1R
2 eqcoe1ply1eq.b B=BaseP
3 eqcoe1ply1eq.a A=coe1K
4 eqcoe1ply1eq.c C=coe1L
5 fveq2 k=nAk=An
6 fveq2 k=nCk=Cn
7 5 6 eqeq12d k=nAk=CkAn=Cn
8 7 rspccv k0Ak=Ckn0An=Cn
9 8 adantl RRingKBLBk0Ak=Ckn0An=Cn
10 9 imp RRingKBLBk0Ak=Ckn0An=Cn
11 3 fveq1i An=coe1Kn
12 4 fveq1i Cn=coe1Ln
13 10 11 12 3eqtr3g RRingKBLBk0Ak=Ckn0coe1Kn=coe1Ln
14 13 oveq1d RRingKBLBk0Ak=Ckn0coe1KnPnmulGrpPvar1R=coe1LnPnmulGrpPvar1R
15 14 mpteq2dva RRingKBLBk0Ak=Ckn0coe1KnPnmulGrpPvar1R=n0coe1LnPnmulGrpPvar1R
16 15 oveq2d RRingKBLBk0Ak=CkPn0coe1KnPnmulGrpPvar1R=Pn0coe1LnPnmulGrpPvar1R
17 eqid var1R=var1R
18 eqid P=P
19 eqid mulGrpP=mulGrpP
20 eqid mulGrpP=mulGrpP
21 eqid coe1K=coe1K
22 1 17 2 18 19 20 21 ply1coe RRingKBK=Pn0coe1KnPnmulGrpPvar1R
23 22 3adant3 RRingKBLBK=Pn0coe1KnPnmulGrpPvar1R
24 eqid coe1L=coe1L
25 1 17 2 18 19 20 24 ply1coe RRingLBL=Pn0coe1LnPnmulGrpPvar1R
26 25 3adant2 RRingKBLBL=Pn0coe1LnPnmulGrpPvar1R
27 23 26 eqeq12d RRingKBLBK=LPn0coe1KnPnmulGrpPvar1R=Pn0coe1LnPnmulGrpPvar1R
28 27 adantr RRingKBLBk0Ak=CkK=LPn0coe1KnPnmulGrpPvar1R=Pn0coe1LnPnmulGrpPvar1R
29 16 28 mpbird RRingKBLBk0Ak=CkK=L
30 29 ex RRingKBLBk0Ak=CkK=L