| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cramer.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
cramer.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 3 |
|
cramer.v |
⊢ 𝑉 = ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) |
| 4 |
|
cramer.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) |
| 5 |
|
cramer.x |
⊢ · = ( 𝑅 maVecMul 〈 𝑁 , 𝑁 〉 ) |
| 6 |
|
cramer.q |
⊢ / = ( /r ‘ 𝑅 ) |
| 7 |
1 2 3 5 4
|
slesolex |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ∃ 𝑣 ∈ 𝑉 ( 𝑋 · 𝑣 ) = 𝑌 ) |
| 8 |
1 2 3 4 5 6
|
cramerlem2 |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ∀ 𝑧 ∈ 𝑉 ( ( 𝑋 · 𝑧 ) = 𝑌 → 𝑧 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) ) ) |
| 9 |
8
|
3adant1l |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ∀ 𝑧 ∈ 𝑉 ( ( 𝑋 · 𝑧 ) = 𝑌 → 𝑧 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) ) ) |
| 10 |
|
oveq2 |
⊢ ( 𝑧 = 𝑣 → ( 𝑋 · 𝑧 ) = ( 𝑋 · 𝑣 ) ) |
| 11 |
10
|
eqeq1d |
⊢ ( 𝑧 = 𝑣 → ( ( 𝑋 · 𝑧 ) = 𝑌 ↔ ( 𝑋 · 𝑣 ) = 𝑌 ) ) |
| 12 |
|
oveq2 |
⊢ ( 𝑣 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) → ( 𝑋 · 𝑣 ) = ( 𝑋 · ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) ) ) |
| 13 |
12
|
eqeq1d |
⊢ ( 𝑣 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) → ( ( 𝑋 · 𝑣 ) = 𝑌 ↔ ( 𝑋 · ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) ) = 𝑌 ) ) |
| 14 |
11 13
|
rexraleqim |
⊢ ( ( ∃ 𝑣 ∈ 𝑉 ( 𝑋 · 𝑣 ) = 𝑌 ∧ ∀ 𝑧 ∈ 𝑉 ( ( 𝑋 · 𝑧 ) = 𝑌 → 𝑧 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) ) ) → ( 𝑋 · ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) ) = 𝑌 ) |
| 15 |
|
oveq2 |
⊢ ( 𝑍 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) → ( 𝑋 · 𝑍 ) = ( 𝑋 · ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) ) ) |
| 16 |
15
|
adantl |
⊢ ( ( ( 𝑋 · ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) ) = 𝑌 ∧ 𝑍 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) ) → ( 𝑋 · 𝑍 ) = ( 𝑋 · ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) ) ) |
| 17 |
|
simpl |
⊢ ( ( ( 𝑋 · ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) ) = 𝑌 ∧ 𝑍 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) ) → ( 𝑋 · ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) ) = 𝑌 ) |
| 18 |
16 17
|
eqtrd |
⊢ ( ( ( 𝑋 · ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) ) = 𝑌 ∧ 𝑍 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) ) → ( 𝑋 · 𝑍 ) = 𝑌 ) |
| 19 |
18
|
ex |
⊢ ( ( 𝑋 · ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) ) = 𝑌 → ( 𝑍 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) → ( 𝑋 · 𝑍 ) = 𝑌 ) ) |
| 20 |
19
|
a1d |
⊢ ( ( 𝑋 · ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) ) = 𝑌 → ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑍 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) → ( 𝑋 · 𝑍 ) = 𝑌 ) ) ) |
| 21 |
14 20
|
syl |
⊢ ( ( ∃ 𝑣 ∈ 𝑉 ( 𝑋 · 𝑣 ) = 𝑌 ∧ ∀ 𝑧 ∈ 𝑉 ( ( 𝑋 · 𝑧 ) = 𝑌 → 𝑧 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) ) ) → ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑍 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) → ( 𝑋 · 𝑍 ) = 𝑌 ) ) ) |
| 22 |
21
|
expcom |
⊢ ( ∀ 𝑧 ∈ 𝑉 ( ( 𝑋 · 𝑧 ) = 𝑌 → 𝑧 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) ) → ( ∃ 𝑣 ∈ 𝑉 ( 𝑋 · 𝑣 ) = 𝑌 → ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑍 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) → ( 𝑋 · 𝑍 ) = 𝑌 ) ) ) ) |
| 23 |
22
|
com23 |
⊢ ( ∀ 𝑧 ∈ 𝑉 ( ( 𝑋 · 𝑧 ) = 𝑌 → 𝑧 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) ) → ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( ∃ 𝑣 ∈ 𝑉 ( 𝑋 · 𝑣 ) = 𝑌 → ( 𝑍 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) → ( 𝑋 · 𝑍 ) = 𝑌 ) ) ) ) |
| 24 |
9 23
|
mpcom |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( ∃ 𝑣 ∈ 𝑉 ( 𝑋 · 𝑣 ) = 𝑌 → ( 𝑍 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) → ( 𝑋 · 𝑍 ) = 𝑌 ) ) ) |
| 25 |
7 24
|
mpd |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑍 = ( 𝑖 ∈ 𝑁 ↦ ( ( 𝐷 ‘ ( ( 𝑋 ( 𝑁 matRepV 𝑅 ) 𝑌 ) ‘ 𝑖 ) ) / ( 𝐷 ‘ 𝑋 ) ) ) → ( 𝑋 · 𝑍 ) = 𝑌 ) ) |