| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexraleqim.1 |
⊢ ( 𝑥 = 𝑧 → ( 𝜓 ↔ 𝜑 ) ) |
| 2 |
|
rexraleqim.2 |
⊢ ( 𝑧 = 𝑌 → ( 𝜑 ↔ 𝜃 ) ) |
| 3 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝑌 ↔ 𝑧 = 𝑌 ) ) |
| 4 |
1 3
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝜓 → 𝑥 = 𝑌 ) ↔ ( 𝜑 → 𝑧 = 𝑌 ) ) ) |
| 5 |
4
|
rspcva |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑌 ) ) → ( 𝜑 → 𝑧 = 𝑌 ) ) |
| 6 |
2
|
biimpd |
⊢ ( 𝑧 = 𝑌 → ( 𝜑 → 𝜃 ) ) |
| 7 |
5 6
|
syli |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑌 ) ) → ( 𝜑 → 𝜃 ) ) |
| 8 |
7
|
impancom |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝜑 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑌 ) → 𝜃 ) ) |
| 9 |
8
|
rexlimiva |
⊢ ( ∃ 𝑧 ∈ 𝐴 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑌 ) → 𝜃 ) ) |
| 10 |
9
|
imp |
⊢ ( ( ∃ 𝑧 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑌 ) ) → 𝜃 ) |