Metamath Proof Explorer


Theorem rexraleqim

Description: Statement following from existence and generalization with equality. (Contributed by AV, 9-Feb-2019)

Ref Expression
Hypotheses rexraleqim.1 x=zψφ
rexraleqim.2 z=Yφθ
Assertion rexraleqim zAφxAψx=Yθ

Proof

Step Hyp Ref Expression
1 rexraleqim.1 x=zψφ
2 rexraleqim.2 z=Yφθ
3 eqeq1 x=zx=Yz=Y
4 1 3 imbi12d x=zψx=Yφz=Y
5 4 rspcva zAxAψx=Yφz=Y
6 2 biimpd z=Yφθ
7 5 6 syli zAxAψx=Yφθ
8 7 impancom zAφxAψx=Yθ
9 8 rexlimiva zAφxAψx=Yθ
10 9 imp zAφxAψx=Yθ