Metamath Proof Explorer


Theorem rexraleqim

Description: Statement following from existence and generalization with equality. (Contributed by AV, 9-Feb-2019)

Ref Expression
Hypotheses rexraleqim.1
|- ( x = z -> ( ps <-> ph ) )
rexraleqim.2
|- ( z = Y -> ( ph <-> th ) )
Assertion rexraleqim
|- ( ( E. z e. A ph /\ A. x e. A ( ps -> x = Y ) ) -> th )

Proof

Step Hyp Ref Expression
1 rexraleqim.1
 |-  ( x = z -> ( ps <-> ph ) )
2 rexraleqim.2
 |-  ( z = Y -> ( ph <-> th ) )
3 eqeq1
 |-  ( x = z -> ( x = Y <-> z = Y ) )
4 1 3 imbi12d
 |-  ( x = z -> ( ( ps -> x = Y ) <-> ( ph -> z = Y ) ) )
5 4 rspcva
 |-  ( ( z e. A /\ A. x e. A ( ps -> x = Y ) ) -> ( ph -> z = Y ) )
6 2 biimpd
 |-  ( z = Y -> ( ph -> th ) )
7 5 6 syli
 |-  ( ( z e. A /\ A. x e. A ( ps -> x = Y ) ) -> ( ph -> th ) )
8 7 impancom
 |-  ( ( z e. A /\ ph ) -> ( A. x e. A ( ps -> x = Y ) -> th ) )
9 8 rexlimiva
 |-  ( E. z e. A ph -> ( A. x e. A ( ps -> x = Y ) -> th ) )
10 9 imp
 |-  ( ( E. z e. A ph /\ A. x e. A ( ps -> x = Y ) ) -> th )