Metamath Proof Explorer


Theorem creftop

Description: A space where every open cover has an A refinement is a topological space. (Contributed by Thierry Arnoux, 7-Jan-2020)

Ref Expression
Assertion creftop ( 𝐽 ∈ CovHasRef 𝐴𝐽 ∈ Top )

Proof

Step Hyp Ref Expression
1 eqid 𝐽 = 𝐽
2 1 iscref ( 𝐽 ∈ CovHasRef 𝐴 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝐽 ( 𝐽 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝐽𝐴 ) 𝑧 Ref 𝑦 ) ) )
3 2 simplbi ( 𝐽 ∈ CovHasRef 𝐴𝐽 ∈ Top )