| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idn1 | ⊢ (    𝐴  ∈  𝐵    ▶    𝐴  ∈  𝐵    ) | 
						
							| 2 |  | df-in | ⊢ ( 𝐶  ∩  𝐷 )  =  { 𝑦  ∣  ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) } | 
						
							| 3 | 2 | ax-gen | ⊢ ∀ 𝑥 ( 𝐶  ∩  𝐷 )  =  { 𝑦  ∣  ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) } | 
						
							| 4 |  | spsbc | ⊢ ( 𝐴  ∈  𝐵  →  ( ∀ 𝑥 ( 𝐶  ∩  𝐷 )  =  { 𝑦  ∣  ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) }  →  [ 𝐴  /  𝑥 ] ( 𝐶  ∩  𝐷 )  =  { 𝑦  ∣  ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) } ) ) | 
						
							| 5 | 1 3 4 | e10 | ⊢ (    𝐴  ∈  𝐵    ▶    [ 𝐴  /  𝑥 ] ( 𝐶  ∩  𝐷 )  =  { 𝑦  ∣  ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) }    ) | 
						
							| 6 |  | sbceqg | ⊢ ( 𝐴  ∈  𝐵  →  ( [ 𝐴  /  𝑥 ] ( 𝐶  ∩  𝐷 )  =  { 𝑦  ∣  ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) }  ↔  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐶  ∩  𝐷 )  =  ⦋ 𝐴  /  𝑥 ⦌ { 𝑦  ∣  ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) } ) ) | 
						
							| 7 | 6 | biimpd | ⊢ ( 𝐴  ∈  𝐵  →  ( [ 𝐴  /  𝑥 ] ( 𝐶  ∩  𝐷 )  =  { 𝑦  ∣  ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) }  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐶  ∩  𝐷 )  =  ⦋ 𝐴  /  𝑥 ⦌ { 𝑦  ∣  ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) } ) ) | 
						
							| 8 | 1 5 7 | e11 | ⊢ (    𝐴  ∈  𝐵    ▶    ⦋ 𝐴  /  𝑥 ⦌ ( 𝐶  ∩  𝐷 )  =  ⦋ 𝐴  /  𝑥 ⦌ { 𝑦  ∣  ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) }    ) | 
						
							| 9 |  | csbab | ⊢ ⦋ 𝐴  /  𝑥 ⦌ { 𝑦  ∣  ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) }  =  { 𝑦  ∣  [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) } | 
						
							| 10 | 9 | a1i | ⊢ ( 𝐴  ∈  𝐵  →  ⦋ 𝐴  /  𝑥 ⦌ { 𝑦  ∣  ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) }  =  { 𝑦  ∣  [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) } ) | 
						
							| 11 | 1 10 | e1a | ⊢ (    𝐴  ∈  𝐵    ▶    ⦋ 𝐴  /  𝑥 ⦌ { 𝑦  ∣  ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) }  =  { 𝑦  ∣  [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) }    ) | 
						
							| 12 |  | eqeq1 | ⊢ ( ⦋ 𝐴  /  𝑥 ⦌ ( 𝐶  ∩  𝐷 )  =  ⦋ 𝐴  /  𝑥 ⦌ { 𝑦  ∣  ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) }  →  ( ⦋ 𝐴  /  𝑥 ⦌ ( 𝐶  ∩  𝐷 )  =  { 𝑦  ∣  [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) }  ↔  ⦋ 𝐴  /  𝑥 ⦌ { 𝑦  ∣  ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) }  =  { 𝑦  ∣  [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) } ) ) | 
						
							| 13 | 12 | biimprd | ⊢ ( ⦋ 𝐴  /  𝑥 ⦌ ( 𝐶  ∩  𝐷 )  =  ⦋ 𝐴  /  𝑥 ⦌ { 𝑦  ∣  ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) }  →  ( ⦋ 𝐴  /  𝑥 ⦌ { 𝑦  ∣  ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) }  =  { 𝑦  ∣  [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) }  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐶  ∩  𝐷 )  =  { 𝑦  ∣  [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) } ) ) | 
						
							| 14 | 8 11 13 | e11 | ⊢ (    𝐴  ∈  𝐵    ▶    ⦋ 𝐴  /  𝑥 ⦌ ( 𝐶  ∩  𝐷 )  =  { 𝑦  ∣  [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) }    ) | 
						
							| 15 |  | sbcan | ⊢ ( [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 )  ↔  ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐶  ∧  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐷 ) ) | 
						
							| 16 | 15 | a1i | ⊢ ( 𝐴  ∈  𝐵  →  ( [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 )  ↔  ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐶  ∧  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐷 ) ) ) | 
						
							| 17 | 1 16 | e1a | ⊢ (    𝐴  ∈  𝐵    ▶    ( [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 )  ↔  ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐶  ∧  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐷 ) )    ) | 
						
							| 18 |  | sbcel2 | ⊢ ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐶  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) | 
						
							| 19 | 18 | a1i | ⊢ ( 𝐴  ∈  𝐵  →  ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐶  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 20 | 1 19 | e1a | ⊢ (    𝐴  ∈  𝐵    ▶    ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐶  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 )    ) | 
						
							| 21 |  | sbcel2 | ⊢ ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐷  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) | 
						
							| 22 | 21 | a1i | ⊢ ( 𝐴  ∈  𝐵  →  ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐷  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) ) | 
						
							| 23 | 1 22 | e1a | ⊢ (    𝐴  ∈  𝐵    ▶    ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐷  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 )    ) | 
						
							| 24 |  | pm4.38 | ⊢ ( ( ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐶  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 )  ∧  ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐷  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) )  →  ( ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐶  ∧  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐷 )  ↔  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) ) ) | 
						
							| 25 | 24 | ex | ⊢ ( ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐶  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 )  →  ( ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐷  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 )  →  ( ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐶  ∧  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐷 )  ↔  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) ) ) ) | 
						
							| 26 | 20 23 25 | e11 | ⊢ (    𝐴  ∈  𝐵    ▶    ( ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐶  ∧  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐷 )  ↔  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) )    ) | 
						
							| 27 |  | bibi1 | ⊢ ( ( [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 )  ↔  ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐶  ∧  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐷 ) )  →  ( ( [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 )  ↔  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) )  ↔  ( ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐶  ∧  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐷 )  ↔  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) ) ) ) | 
						
							| 28 | 27 | biimprd | ⊢ ( ( [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 )  ↔  ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐶  ∧  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐷 ) )  →  ( ( ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐶  ∧  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐷 )  ↔  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) )  →  ( [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 )  ↔  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) ) ) ) | 
						
							| 29 | 17 26 28 | e11 | ⊢ (    𝐴  ∈  𝐵    ▶    ( [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 )  ↔  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) )    ) | 
						
							| 30 | 29 | gen11 | ⊢ (    𝐴  ∈  𝐵    ▶    ∀ 𝑦 ( [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 )  ↔  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) )    ) | 
						
							| 31 |  | abbib | ⊢ ( { 𝑦  ∣  [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) }  =  { 𝑦  ∣  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) }  ↔  ∀ 𝑦 ( [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 )  ↔  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) ) ) | 
						
							| 32 | 31 | biimpri | ⊢ ( ∀ 𝑦 ( [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 )  ↔  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) )  →  { 𝑦  ∣  [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) }  =  { 𝑦  ∣  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) } ) | 
						
							| 33 | 30 32 | e1a | ⊢ (    𝐴  ∈  𝐵    ▶    { 𝑦  ∣  [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) }  =  { 𝑦  ∣  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) }    ) | 
						
							| 34 |  | eqeq1 | ⊢ ( ⦋ 𝐴  /  𝑥 ⦌ ( 𝐶  ∩  𝐷 )  =  { 𝑦  ∣  [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) }  →  ( ⦋ 𝐴  /  𝑥 ⦌ ( 𝐶  ∩  𝐷 )  =  { 𝑦  ∣  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) }  ↔  { 𝑦  ∣  [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) }  =  { 𝑦  ∣  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) } ) ) | 
						
							| 35 | 34 | biimprd | ⊢ ( ⦋ 𝐴  /  𝑥 ⦌ ( 𝐶  ∩  𝐷 )  =  { 𝑦  ∣  [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) }  →  ( { 𝑦  ∣  [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐶  ∧  𝑦  ∈  𝐷 ) }  =  { 𝑦  ∣  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) }  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐶  ∩  𝐷 )  =  { 𝑦  ∣  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) } ) ) | 
						
							| 36 | 14 33 35 | e11 | ⊢ (    𝐴  ∈  𝐵    ▶    ⦋ 𝐴  /  𝑥 ⦌ ( 𝐶  ∩  𝐷 )  =  { 𝑦  ∣  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) }    ) | 
						
							| 37 |  | df-in | ⊢ ( ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∩  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 )  =  { 𝑦  ∣  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) } | 
						
							| 38 |  | eqeq2 | ⊢ ( ( ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∩  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 )  =  { 𝑦  ∣  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) }  →  ( ⦋ 𝐴  /  𝑥 ⦌ ( 𝐶  ∩  𝐷 )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∩  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 )  ↔  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐶  ∩  𝐷 )  =  { 𝑦  ∣  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) } ) ) | 
						
							| 39 | 38 | biimprcd | ⊢ ( ⦋ 𝐴  /  𝑥 ⦌ ( 𝐶  ∩  𝐷 )  =  { 𝑦  ∣  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) }  →  ( ( ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∩  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 )  =  { 𝑦  ∣  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∧  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) }  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐶  ∩  𝐷 )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∩  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) ) ) | 
						
							| 40 | 36 37 39 | e10 | ⊢ (    𝐴  ∈  𝐵    ▶    ⦋ 𝐴  /  𝑥 ⦌ ( 𝐶  ∩  𝐷 )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∩  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 )    ) | 
						
							| 41 | 40 | in1 | ⊢ ( 𝐴  ∈  𝐵  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐶  ∩  𝐷 )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ∩  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) ) |