Description: Lemma for currysetlem , where it is used with ( x e. x -> ph ) substituted for ps . (Contributed by BJ, 23-Sep-2023) This proof is intuitionistically valid. (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | currysetlem | ⊢ ( { 𝑥 ∣ 𝜓 } ∈ 𝑉 → ( { 𝑥 ∣ 𝜓 } ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ↔ ( { 𝑥 ∣ 𝜓 } ∈ { 𝑥 ∣ 𝜓 } → 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∣ 𝜓 } | |
| 2 | 1 1 | nfel | ⊢ Ⅎ 𝑥 { 𝑥 ∣ 𝜓 } ∈ { 𝑥 ∣ 𝜓 } |
| 3 | nfv | ⊢ Ⅎ 𝑥 𝜑 | |
| 4 | 2 3 | nfim | ⊢ Ⅎ 𝑥 ( { 𝑥 ∣ 𝜓 } ∈ { 𝑥 ∣ 𝜓 } → 𝜑 ) |
| 5 | id | ⊢ ( 𝑥 = { 𝑥 ∣ 𝜓 } → 𝑥 = { 𝑥 ∣ 𝜓 } ) | |
| 6 | 5 5 | eleq12d | ⊢ ( 𝑥 = { 𝑥 ∣ 𝜓 } → ( 𝑥 ∈ 𝑥 ↔ { 𝑥 ∣ 𝜓 } ∈ { 𝑥 ∣ 𝜓 } ) ) |
| 7 | 6 | imbi1d | ⊢ ( 𝑥 = { 𝑥 ∣ 𝜓 } → ( ( 𝑥 ∈ 𝑥 → 𝜑 ) ↔ ( { 𝑥 ∣ 𝜓 } ∈ { 𝑥 ∣ 𝜓 } → 𝜑 ) ) ) |
| 8 | 1 4 7 | elabgf | ⊢ ( { 𝑥 ∣ 𝜓 } ∈ 𝑉 → ( { 𝑥 ∣ 𝜓 } ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ↔ ( { 𝑥 ∣ 𝜓 } ∈ { 𝑥 ∣ 𝜓 } → 𝜑 ) ) ) |