Metamath Proof Explorer


Theorem currysetlem

Description: Lemma for currysetlem , where it is used with ( x e. x -> ph ) substituted for ps . (Contributed by BJ, 23-Sep-2023) This proof is intuitionistically valid. (Proof modification is discouraged.)

Ref Expression
Assertion currysetlem ( { 𝑥𝜓 } ∈ 𝑉 → ( { 𝑥𝜓 } ∈ { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } ↔ ( { 𝑥𝜓 } ∈ { 𝑥𝜓 } → 𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 nfab1 𝑥 { 𝑥𝜓 }
2 1 1 nfel 𝑥 { 𝑥𝜓 } ∈ { 𝑥𝜓 }
3 nfv 𝑥 𝜑
4 2 3 nfim 𝑥 ( { 𝑥𝜓 } ∈ { 𝑥𝜓 } → 𝜑 )
5 id ( 𝑥 = { 𝑥𝜓 } → 𝑥 = { 𝑥𝜓 } )
6 5 5 eleq12d ( 𝑥 = { 𝑥𝜓 } → ( 𝑥𝑥 ↔ { 𝑥𝜓 } ∈ { 𝑥𝜓 } ) )
7 6 imbi1d ( 𝑥 = { 𝑥𝜓 } → ( ( 𝑥𝑥𝜑 ) ↔ ( { 𝑥𝜓 } ∈ { 𝑥𝜓 } → 𝜑 ) ) )
8 1 4 7 elabgf ( { 𝑥𝜓 } ∈ 𝑉 → ( { 𝑥𝜓 } ∈ { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } ↔ ( { 𝑥𝜓 } ∈ { 𝑥𝜓 } → 𝜑 ) ) )