Step |
Hyp |
Ref |
Expression |
1 |
|
nfab1 |
|- F/_ x { x | ps } |
2 |
1 1
|
nfel |
|- F/ x { x | ps } e. { x | ps } |
3 |
|
nfv |
|- F/ x ph |
4 |
2 3
|
nfim |
|- F/ x ( { x | ps } e. { x | ps } -> ph ) |
5 |
|
id |
|- ( x = { x | ps } -> x = { x | ps } ) |
6 |
5 5
|
eleq12d |
|- ( x = { x | ps } -> ( x e. x <-> { x | ps } e. { x | ps } ) ) |
7 |
6
|
imbi1d |
|- ( x = { x | ps } -> ( ( x e. x -> ph ) <-> ( { x | ps } e. { x | ps } -> ph ) ) ) |
8 |
1 4 7
|
elabgf |
|- ( { x | ps } e. V -> ( { x | ps } e. { x | ( x e. x -> ph ) } <-> ( { x | ps } e. { x | ps } -> ph ) ) ) |