| Step |
Hyp |
Ref |
Expression |
| 1 |
|
currysetlem |
|- ( { x | ( x e. x -> ph ) } e. { x | ( x e. x -> ph ) } -> ( { x | ( x e. x -> ph ) } e. { x | ( x e. x -> ph ) } <-> ( { x | ( x e. x -> ph ) } e. { x | ( x e. x -> ph ) } -> ph ) ) ) |
| 2 |
1
|
ibi |
|- ( { x | ( x e. x -> ph ) } e. { x | ( x e. x -> ph ) } -> ( { x | ( x e. x -> ph ) } e. { x | ( x e. x -> ph ) } -> ph ) ) |
| 3 |
2
|
pm2.43i |
|- ( { x | ( x e. x -> ph ) } e. { x | ( x e. x -> ph ) } -> ph ) |
| 4 |
|
currysetlem |
|- ( { x | ( x e. x -> ph ) } e. V -> ( { x | ( x e. x -> ph ) } e. { x | ( x e. x -> ph ) } <-> ( { x | ( x e. x -> ph ) } e. { x | ( x e. x -> ph ) } -> ph ) ) ) |
| 5 |
3 4
|
mpbiri |
|- ( { x | ( x e. x -> ph ) } e. V -> { x | ( x e. x -> ph ) } e. { x | ( x e. x -> ph ) } ) |
| 6 |
|
ax-1 |
|- ( ph -> ( x e. x -> ph ) ) |
| 7 |
6
|
alrimiv |
|- ( ph -> A. x ( x e. x -> ph ) ) |
| 8 |
|
bj-abv |
|- ( A. x ( x e. x -> ph ) -> { x | ( x e. x -> ph ) } = _V ) |
| 9 |
7 8
|
syl |
|- ( ph -> { x | ( x e. x -> ph ) } = _V ) |
| 10 |
|
nvel |
|- -. _V e. V |
| 11 |
|
eleq1 |
|- ( { x | ( x e. x -> ph ) } = _V -> ( { x | ( x e. x -> ph ) } e. V <-> _V e. V ) ) |
| 12 |
10 11
|
mtbiri |
|- ( { x | ( x e. x -> ph ) } = _V -> -. { x | ( x e. x -> ph ) } e. V ) |
| 13 |
5 3 9 12
|
4syl |
|- ( { x | ( x e. x -> ph ) } e. V -> -. { x | ( x e. x -> ph ) } e. V ) |
| 14 |
13
|
pm2.01i |
|- -. { x | ( x e. x -> ph ) } e. V |