| Step | Hyp | Ref | Expression | 
						
							| 1 |  | currysetlem |  |-  ( { x | ( x e. x -> ph ) } e. { x | ( x e. x -> ph ) } -> ( { x | ( x e. x -> ph ) } e. { x | ( x e. x -> ph ) } <-> ( { x | ( x e. x -> ph ) } e. { x | ( x e. x -> ph ) } -> ph ) ) ) | 
						
							| 2 | 1 | ibi |  |-  ( { x | ( x e. x -> ph ) } e. { x | ( x e. x -> ph ) } -> ( { x | ( x e. x -> ph ) } e. { x | ( x e. x -> ph ) } -> ph ) ) | 
						
							| 3 | 2 | pm2.43i |  |-  ( { x | ( x e. x -> ph ) } e. { x | ( x e. x -> ph ) } -> ph ) | 
						
							| 4 |  | currysetlem |  |-  ( { x | ( x e. x -> ph ) } e. V -> ( { x | ( x e. x -> ph ) } e. { x | ( x e. x -> ph ) } <-> ( { x | ( x e. x -> ph ) } e. { x | ( x e. x -> ph ) } -> ph ) ) ) | 
						
							| 5 | 3 4 | mpbiri |  |-  ( { x | ( x e. x -> ph ) } e. V -> { x | ( x e. x -> ph ) } e. { x | ( x e. x -> ph ) } ) | 
						
							| 6 |  | ax-1 |  |-  ( ph -> ( x e. x -> ph ) ) | 
						
							| 7 | 6 | alrimiv |  |-  ( ph -> A. x ( x e. x -> ph ) ) | 
						
							| 8 |  | bj-abv |  |-  ( A. x ( x e. x -> ph ) -> { x | ( x e. x -> ph ) } = _V ) | 
						
							| 9 | 7 8 | syl |  |-  ( ph -> { x | ( x e. x -> ph ) } = _V ) | 
						
							| 10 |  | nvel |  |-  -. _V e. V | 
						
							| 11 |  | eleq1 |  |-  ( { x | ( x e. x -> ph ) } = _V -> ( { x | ( x e. x -> ph ) } e. V <-> _V e. V ) ) | 
						
							| 12 | 10 11 | mtbiri |  |-  ( { x | ( x e. x -> ph ) } = _V -> -. { x | ( x e. x -> ph ) } e. V ) | 
						
							| 13 | 5 3 9 12 | 4syl |  |-  ( { x | ( x e. x -> ph ) } e. V -> -. { x | ( x e. x -> ph ) } e. V ) | 
						
							| 14 | 13 | pm2.01i |  |-  -. { x | ( x e. x -> ph ) } e. V |