Metamath Proof Explorer


Theorem curryset

Description: Curry's paradox in set theory. This can be seen as a generalization of Russell's paradox, which corresponds to the case where ph is F. . See alternate exposal of basically the same proof currysetALT . (Contributed by BJ, 23-Sep-2023) This proof is intuitionistically valid. (Proof modification is discouraged.)

Ref Expression
Assertion curryset
|- -. { x | ( x e. x -> ph ) } e. V

Proof

Step Hyp Ref Expression
1 currysetlem
 |-  ( { x | ( x e. x -> ph ) } e. { x | ( x e. x -> ph ) } -> ( { x | ( x e. x -> ph ) } e. { x | ( x e. x -> ph ) } <-> ( { x | ( x e. x -> ph ) } e. { x | ( x e. x -> ph ) } -> ph ) ) )
2 1 ibi
 |-  ( { x | ( x e. x -> ph ) } e. { x | ( x e. x -> ph ) } -> ( { x | ( x e. x -> ph ) } e. { x | ( x e. x -> ph ) } -> ph ) )
3 2 pm2.43i
 |-  ( { x | ( x e. x -> ph ) } e. { x | ( x e. x -> ph ) } -> ph )
4 currysetlem
 |-  ( { x | ( x e. x -> ph ) } e. V -> ( { x | ( x e. x -> ph ) } e. { x | ( x e. x -> ph ) } <-> ( { x | ( x e. x -> ph ) } e. { x | ( x e. x -> ph ) } -> ph ) ) )
5 3 4 mpbiri
 |-  ( { x | ( x e. x -> ph ) } e. V -> { x | ( x e. x -> ph ) } e. { x | ( x e. x -> ph ) } )
6 ax-1
 |-  ( ph -> ( x e. x -> ph ) )
7 6 alrimiv
 |-  ( ph -> A. x ( x e. x -> ph ) )
8 bj-abv
 |-  ( A. x ( x e. x -> ph ) -> { x | ( x e. x -> ph ) } = _V )
9 7 8 syl
 |-  ( ph -> { x | ( x e. x -> ph ) } = _V )
10 nvel
 |-  -. _V e. V
11 eleq1
 |-  ( { x | ( x e. x -> ph ) } = _V -> ( { x | ( x e. x -> ph ) } e. V <-> _V e. V ) )
12 10 11 mtbiri
 |-  ( { x | ( x e. x -> ph ) } = _V -> -. { x | ( x e. x -> ph ) } e. V )
13 5 3 9 12 4syl
 |-  ( { x | ( x e. x -> ph ) } e. V -> -. { x | ( x e. x -> ph ) } e. V )
14 13 bj-pm2.01i
 |-  -. { x | ( x e. x -> ph ) } e. V