Metamath Proof Explorer


Theorem curryset

Description: Curry's paradox in set theory. This can be seen as a generalization of Russell's paradox, which corresponds to the case where ph is F. . See alternate exposal of basically the same proof currysetALT . (Contributed by BJ, 23-Sep-2023) This proof is intuitionistically valid. (Proof modification is discouraged.)

Ref Expression
Assertion curryset ¬ x | x x φ V

Proof

Step Hyp Ref Expression
1 currysetlem x | x x φ x | x x φ x | x x φ x | x x φ x | x x φ x | x x φ φ
2 1 ibi x | x x φ x | x x φ x | x x φ x | x x φ φ
3 2 pm2.43i x | x x φ x | x x φ φ
4 currysetlem x | x x φ V x | x x φ x | x x φ x | x x φ x | x x φ φ
5 3 4 mpbiri x | x x φ V x | x x φ x | x x φ
6 ax-1 φ x x φ
7 6 alrimiv φ x x x φ
8 bj-abv x x x φ x | x x φ = V
9 7 8 syl φ x | x x φ = V
10 nvel ¬ V V
11 eleq1 x | x x φ = V x | x x φ V V V
12 10 11 mtbiri x | x x φ = V ¬ x | x x φ V
13 5 3 9 12 4syl x | x x φ V ¬ x | x x φ V
14 13 bj-pm2.01i ¬ x | x x φ V