| Step | Hyp | Ref | Expression | 
						
							| 1 |  | currysetlem | ⊢ ( { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  ∈  { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  →  ( { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  ∈  { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  ↔  ( { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  ∈  { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  →  𝜑 ) ) ) | 
						
							| 2 | 1 | ibi | ⊢ ( { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  ∈  { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  →  ( { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  ∈  { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  →  𝜑 ) ) | 
						
							| 3 | 2 | pm2.43i | ⊢ ( { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  ∈  { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  →  𝜑 ) | 
						
							| 4 |  | currysetlem | ⊢ ( { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  ∈  𝑉  →  ( { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  ∈  { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  ↔  ( { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  ∈  { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  →  𝜑 ) ) ) | 
						
							| 5 | 3 4 | mpbiri | ⊢ ( { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  ∈  𝑉  →  { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  ∈  { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) } ) | 
						
							| 6 |  | ax-1 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑥  →  𝜑 ) ) | 
						
							| 7 | 6 | alrimiv | ⊢ ( 𝜑  →  ∀ 𝑥 ( 𝑥  ∈  𝑥  →  𝜑 ) ) | 
						
							| 8 |  | bj-abv | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝑥  →  𝜑 )  →  { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  =  V ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝜑  →  { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  =  V ) | 
						
							| 10 |  | nvel | ⊢ ¬  V  ∈  𝑉 | 
						
							| 11 |  | eleq1 | ⊢ ( { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  =  V  →  ( { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  ∈  𝑉  ↔  V  ∈  𝑉 ) ) | 
						
							| 12 | 10 11 | mtbiri | ⊢ ( { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  =  V  →  ¬  { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  ∈  𝑉 ) | 
						
							| 13 | 5 3 9 12 | 4syl | ⊢ ( { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  ∈  𝑉  →  ¬  { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  ∈  𝑉 ) | 
						
							| 14 | 13 | pm2.01i | ⊢ ¬  { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  ∈  𝑉 |