Step |
Hyp |
Ref |
Expression |
1 |
|
currysetlem |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } → ( { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ↔ ( { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } → 𝜑 ) ) ) |
2 |
1
|
ibi |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } → ( { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } → 𝜑 ) ) |
3 |
2
|
pm2.43i |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } → 𝜑 ) |
4 |
|
currysetlem |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ 𝑉 → ( { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ↔ ( { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } → 𝜑 ) ) ) |
5 |
3 4
|
mpbiri |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ 𝑉 → { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ) |
6 |
|
ax-1 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑥 → 𝜑 ) ) |
7 |
6
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝑥 → 𝜑 ) ) |
8 |
|
bj-abv |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑥 → 𝜑 ) → { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } = V ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } = V ) |
10 |
|
nvel |
⊢ ¬ V ∈ 𝑉 |
11 |
|
eleq1 |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } = V → ( { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ 𝑉 ↔ V ∈ 𝑉 ) ) |
12 |
10 11
|
mtbiri |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } = V → ¬ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ 𝑉 ) |
13 |
5 3 9 12
|
4syl |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ 𝑉 → ¬ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ 𝑉 ) |
14 |
13
|
bj-pm2.01i |
⊢ ¬ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ 𝑉 |