| Step |
Hyp |
Ref |
Expression |
| 1 |
|
currysetlem |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } → ( { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ↔ ( { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } → 𝜑 ) ) ) |
| 2 |
1
|
ibi |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } → ( { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } → 𝜑 ) ) |
| 3 |
2
|
pm2.43i |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } → 𝜑 ) |
| 4 |
|
currysetlem |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ 𝑉 → ( { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ↔ ( { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } → 𝜑 ) ) ) |
| 5 |
3 4
|
mpbiri |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ 𝑉 → { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ) |
| 6 |
|
ax-1 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑥 → 𝜑 ) ) |
| 7 |
6
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝑥 → 𝜑 ) ) |
| 8 |
|
bj-abv |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑥 → 𝜑 ) → { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } = V ) |
| 9 |
7 8
|
syl |
⊢ ( 𝜑 → { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } = V ) |
| 10 |
|
nvel |
⊢ ¬ V ∈ 𝑉 |
| 11 |
|
eleq1 |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } = V → ( { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ 𝑉 ↔ V ∈ 𝑉 ) ) |
| 12 |
10 11
|
mtbiri |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } = V → ¬ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ 𝑉 ) |
| 13 |
5 3 9 12
|
4syl |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ 𝑉 → ¬ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ 𝑉 ) |
| 14 |
13
|
pm2.01i |
⊢ ¬ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ∈ 𝑉 |