Metamath Proof Explorer


Theorem curryset

Description: Curry's paradox in set theory. This can be seen as a generalization of Russell's paradox, which corresponds to the case where ph is F. . See alternate exposal of basically the same proof currysetALT . (Contributed by BJ, 23-Sep-2023) This proof is intuitionistically valid. (Proof modification is discouraged.)

Ref Expression
Assertion curryset ¬ { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } ∈ 𝑉

Proof

Step Hyp Ref Expression
1 currysetlem ( { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } ∈ { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } → ( { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } ∈ { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } ↔ ( { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } ∈ { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } → 𝜑 ) ) )
2 1 ibi ( { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } ∈ { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } → ( { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } ∈ { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } → 𝜑 ) )
3 2 pm2.43i ( { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } ∈ { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } → 𝜑 )
4 currysetlem ( { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } ∈ 𝑉 → ( { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } ∈ { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } ↔ ( { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } ∈ { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } → 𝜑 ) ) )
5 3 4 mpbiri ( { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } ∈ 𝑉 → { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } ∈ { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } )
6 ax-1 ( 𝜑 → ( 𝑥𝑥𝜑 ) )
7 6 alrimiv ( 𝜑 → ∀ 𝑥 ( 𝑥𝑥𝜑 ) )
8 bj-abv ( ∀ 𝑥 ( 𝑥𝑥𝜑 ) → { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } = V )
9 7 8 syl ( 𝜑 → { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } = V )
10 nvel ¬ V ∈ 𝑉
11 eleq1 ( { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } = V → ( { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } ∈ 𝑉 ↔ V ∈ 𝑉 ) )
12 10 11 mtbiri ( { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } = V → ¬ { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } ∈ 𝑉 )
13 5 3 9 12 4syl ( { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } ∈ 𝑉 → ¬ { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } ∈ 𝑉 )
14 13 bj-pm2.01i ¬ { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } ∈ 𝑉