| Step |
Hyp |
Ref |
Expression |
| 1 |
|
currysetlem2.def |
⊢ 𝑋 = { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } |
| 2 |
1
|
eqcomi |
⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } = 𝑋 |
| 3 |
2
|
eleq2i |
⊢ ( 𝑋 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ↔ 𝑋 ∈ 𝑋 ) |
| 4 |
|
nfab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } |
| 5 |
1 4
|
nfcxfr |
⊢ Ⅎ 𝑥 𝑋 |
| 6 |
5 5
|
nfel |
⊢ Ⅎ 𝑥 𝑋 ∈ 𝑋 |
| 7 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 8 |
6 7
|
nfim |
⊢ Ⅎ 𝑥 ( 𝑋 ∈ 𝑋 → 𝜑 ) |
| 9 |
|
id |
⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) |
| 10 |
9 9
|
eleq12d |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ 𝑥 ↔ 𝑋 ∈ 𝑋 ) ) |
| 11 |
10
|
imbi1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ∈ 𝑥 → 𝜑 ) ↔ ( 𝑋 ∈ 𝑋 → 𝜑 ) ) ) |
| 12 |
5 8 11
|
elabgf |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } ↔ ( 𝑋 ∈ 𝑋 → 𝜑 ) ) ) |
| 13 |
3 12
|
bitr3id |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∈ 𝑋 ↔ ( 𝑋 ∈ 𝑋 → 𝜑 ) ) ) |