Metamath Proof Explorer


Theorem currysetlem1

Description: Lemma for currysetALT . (Contributed by BJ, 23-Sep-2023) This proof is intuitionistically valid. (Proof modification is discouraged.)

Ref Expression
Hypothesis currysetlem2.def 𝑋 = { 𝑥 ∣ ( 𝑥𝑥𝜑 ) }
Assertion currysetlem1 ( 𝑋𝑉 → ( 𝑋𝑋 ↔ ( 𝑋𝑋𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 currysetlem2.def 𝑋 = { 𝑥 ∣ ( 𝑥𝑥𝜑 ) }
2 1 eqcomi { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } = 𝑋
3 2 eleq2i ( 𝑋 ∈ { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } ↔ 𝑋𝑋 )
4 nfab1 𝑥 { 𝑥 ∣ ( 𝑥𝑥𝜑 ) }
5 1 4 nfcxfr 𝑥 𝑋
6 5 5 nfel 𝑥 𝑋𝑋
7 nfv 𝑥 𝜑
8 6 7 nfim 𝑥 ( 𝑋𝑋𝜑 )
9 id ( 𝑥 = 𝑋𝑥 = 𝑋 )
10 9 9 eleq12d ( 𝑥 = 𝑋 → ( 𝑥𝑥𝑋𝑋 ) )
11 10 imbi1d ( 𝑥 = 𝑋 → ( ( 𝑥𝑥𝜑 ) ↔ ( 𝑋𝑋𝜑 ) ) )
12 5 8 11 elabgf ( 𝑋𝑉 → ( 𝑋 ∈ { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } ↔ ( 𝑋𝑋𝜑 ) ) )
13 3 12 bitr3id ( 𝑋𝑉 → ( 𝑋𝑋 ↔ ( 𝑋𝑋𝜑 ) ) )