| Step | Hyp | Ref | Expression | 
						
							| 1 |  | currysetlem2.def | ⊢ 𝑋  =  { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) } | 
						
							| 2 | 1 | eqcomi | ⊢ { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  =  𝑋 | 
						
							| 3 | 2 | eleq2i | ⊢ ( 𝑋  ∈  { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  ↔  𝑋  ∈  𝑋 ) | 
						
							| 4 |  | nfab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) } | 
						
							| 5 | 1 4 | nfcxfr | ⊢ Ⅎ 𝑥 𝑋 | 
						
							| 6 | 5 5 | nfel | ⊢ Ⅎ 𝑥 𝑋  ∈  𝑋 | 
						
							| 7 |  | nfv | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 8 | 6 7 | nfim | ⊢ Ⅎ 𝑥 ( 𝑋  ∈  𝑋  →  𝜑 ) | 
						
							| 9 |  | id | ⊢ ( 𝑥  =  𝑋  →  𝑥  =  𝑋 ) | 
						
							| 10 | 9 9 | eleq12d | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  ∈  𝑥  ↔  𝑋  ∈  𝑋 ) ) | 
						
							| 11 | 10 | imbi1d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑥  ∈  𝑥  →  𝜑 )  ↔  ( 𝑋  ∈  𝑋  →  𝜑 ) ) ) | 
						
							| 12 | 5 8 11 | elabgf | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑋  ∈  { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  ↔  ( 𝑋  ∈  𝑋  →  𝜑 ) ) ) | 
						
							| 13 | 3 12 | bitr3id | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑋  ∈  𝑋  ↔  ( 𝑋  ∈  𝑋  →  𝜑 ) ) ) |