Metamath Proof Explorer


Theorem currysetlem2

Description: Lemma for currysetALT . (Contributed by BJ, 23-Sep-2023) This proof is intuitionistically valid. (Proof modification is discouraged.)

Ref Expression
Hypothesis currysetlem2.def 𝑋 = { 𝑥 ∣ ( 𝑥𝑥𝜑 ) }
Assertion currysetlem2 ( 𝑋𝑉 → ( 𝑋𝑋𝜑 ) )

Proof

Step Hyp Ref Expression
1 currysetlem2.def 𝑋 = { 𝑥 ∣ ( 𝑥𝑥𝜑 ) }
2 1 currysetlem1 ( 𝑋𝑉 → ( 𝑋𝑋 ↔ ( 𝑋𝑋𝜑 ) ) )
3 2 biimpd ( 𝑋𝑉 → ( 𝑋𝑋 → ( 𝑋𝑋𝜑 ) ) )
4 3 pm2.43d ( 𝑋𝑉 → ( 𝑋𝑋𝜑 ) )