Metamath Proof Explorer


Theorem currysetlem2

Description: Lemma for currysetALT . (Contributed by BJ, 23-Sep-2023) This proof is intuitionistically valid. (Proof modification is discouraged.)

Ref Expression
Hypothesis currysetlem2.def
|- X = { x | ( x e. x -> ph ) }
Assertion currysetlem2
|- ( X e. V -> ( X e. X -> ph ) )

Proof

Step Hyp Ref Expression
1 currysetlem2.def
 |-  X = { x | ( x e. x -> ph ) }
2 1 currysetlem1
 |-  ( X e. V -> ( X e. X <-> ( X e. X -> ph ) ) )
3 2 biimpd
 |-  ( X e. V -> ( X e. X -> ( X e. X -> ph ) ) )
4 3 pm2.43d
 |-  ( X e. V -> ( X e. X -> ph ) )