Metamath Proof Explorer


Theorem currysetlem1

Description: Lemma for currysetALT . (Contributed by BJ, 23-Sep-2023) This proof is intuitionistically valid. (Proof modification is discouraged.)

Ref Expression
Hypothesis currysetlem2.def
|- X = { x | ( x e. x -> ph ) }
Assertion currysetlem1
|- ( X e. V -> ( X e. X <-> ( X e. X -> ph ) ) )

Proof

Step Hyp Ref Expression
1 currysetlem2.def
 |-  X = { x | ( x e. x -> ph ) }
2 1 eqcomi
 |-  { x | ( x e. x -> ph ) } = X
3 2 eleq2i
 |-  ( X e. { x | ( x e. x -> ph ) } <-> X e. X )
4 nfab1
 |-  F/_ x { x | ( x e. x -> ph ) }
5 1 4 nfcxfr
 |-  F/_ x X
6 5 5 nfel
 |-  F/ x X e. X
7 nfv
 |-  F/ x ph
8 6 7 nfim
 |-  F/ x ( X e. X -> ph )
9 id
 |-  ( x = X -> x = X )
10 9 9 eleq12d
 |-  ( x = X -> ( x e. x <-> X e. X ) )
11 10 imbi1d
 |-  ( x = X -> ( ( x e. x -> ph ) <-> ( X e. X -> ph ) ) )
12 5 8 11 elabgf
 |-  ( X e. V -> ( X e. { x | ( x e. x -> ph ) } <-> ( X e. X -> ph ) ) )
13 3 12 bitr3id
 |-  ( X e. V -> ( X e. X <-> ( X e. X -> ph ) ) )