Step |
Hyp |
Ref |
Expression |
1 |
|
currysetlem2.def |
|- X = { x | ( x e. x -> ph ) } |
2 |
1
|
eqcomi |
|- { x | ( x e. x -> ph ) } = X |
3 |
2
|
eleq2i |
|- ( X e. { x | ( x e. x -> ph ) } <-> X e. X ) |
4 |
|
nfab1 |
|- F/_ x { x | ( x e. x -> ph ) } |
5 |
1 4
|
nfcxfr |
|- F/_ x X |
6 |
5 5
|
nfel |
|- F/ x X e. X |
7 |
|
nfv |
|- F/ x ph |
8 |
6 7
|
nfim |
|- F/ x ( X e. X -> ph ) |
9 |
|
id |
|- ( x = X -> x = X ) |
10 |
9 9
|
eleq12d |
|- ( x = X -> ( x e. x <-> X e. X ) ) |
11 |
10
|
imbi1d |
|- ( x = X -> ( ( x e. x -> ph ) <-> ( X e. X -> ph ) ) ) |
12 |
5 8 11
|
elabgf |
|- ( X e. V -> ( X e. { x | ( x e. x -> ph ) } <-> ( X e. X -> ph ) ) ) |
13 |
3 12
|
bitr3id |
|- ( X e. V -> ( X e. X <-> ( X e. X -> ph ) ) ) |