| Step | Hyp | Ref | Expression | 
						
							| 1 |  | currysetlem2.def |  |-  X = { x | ( x e. x -> ph ) } | 
						
							| 2 | 1 | eqcomi |  |-  { x | ( x e. x -> ph ) } = X | 
						
							| 3 | 2 | eleq2i |  |-  ( X e. { x | ( x e. x -> ph ) } <-> X e. X ) | 
						
							| 4 |  | nfab1 |  |-  F/_ x { x | ( x e. x -> ph ) } | 
						
							| 5 | 1 4 | nfcxfr |  |-  F/_ x X | 
						
							| 6 | 5 5 | nfel |  |-  F/ x X e. X | 
						
							| 7 |  | nfv |  |-  F/ x ph | 
						
							| 8 | 6 7 | nfim |  |-  F/ x ( X e. X -> ph ) | 
						
							| 9 |  | id |  |-  ( x = X -> x = X ) | 
						
							| 10 | 9 9 | eleq12d |  |-  ( x = X -> ( x e. x <-> X e. X ) ) | 
						
							| 11 | 10 | imbi1d |  |-  ( x = X -> ( ( x e. x -> ph ) <-> ( X e. X -> ph ) ) ) | 
						
							| 12 | 5 8 11 | elabgf |  |-  ( X e. V -> ( X e. { x | ( x e. x -> ph ) } <-> ( X e. X -> ph ) ) ) | 
						
							| 13 | 3 12 | bitr3id |  |-  ( X e. V -> ( X e. X <-> ( X e. X -> ph ) ) ) |