Step |
Hyp |
Ref |
Expression |
1 |
|
currysetlem2.def |
|- X = { x | ( x e. x -> ph ) } |
2 |
1
|
currysetlem2 |
|- ( X e. V -> ( X e. X -> ph ) ) |
3 |
1
|
currysetlem1 |
|- ( X e. V -> ( X e. X <-> ( X e. X -> ph ) ) ) |
4 |
2 3
|
mpbird |
|- ( X e. V -> X e. X ) |
5 |
1
|
currysetlem2 |
|- ( X e. X -> ( X e. X -> ph ) ) |
6 |
5
|
pm2.43i |
|- ( X e. X -> ph ) |
7 |
|
ax-1 |
|- ( ph -> ( x e. x -> ph ) ) |
8 |
7
|
alrimiv |
|- ( ph -> A. x ( x e. x -> ph ) ) |
9 |
|
bj-abv |
|- ( A. x ( x e. x -> ph ) -> { x | ( x e. x -> ph ) } = _V ) |
10 |
1 9
|
syl5eq |
|- ( A. x ( x e. x -> ph ) -> X = _V ) |
11 |
8 10
|
syl |
|- ( ph -> X = _V ) |
12 |
|
nvel |
|- -. _V e. V |
13 |
|
eleq1 |
|- ( X = _V -> ( X e. V <-> _V e. V ) ) |
14 |
12 13
|
mtbiri |
|- ( X = _V -> -. X e. V ) |
15 |
4 6 11 14
|
4syl |
|- ( X e. V -> -. X e. V ) |
16 |
15
|
bj-pm2.01i |
|- -. X e. V |