| Step |
Hyp |
Ref |
Expression |
| 1 |
|
currysetlem2.def |
|- X = { x | ( x e. x -> ph ) } |
| 2 |
1
|
currysetlem2 |
|- ( X e. V -> ( X e. X -> ph ) ) |
| 3 |
1
|
currysetlem1 |
|- ( X e. V -> ( X e. X <-> ( X e. X -> ph ) ) ) |
| 4 |
2 3
|
mpbird |
|- ( X e. V -> X e. X ) |
| 5 |
1
|
currysetlem2 |
|- ( X e. X -> ( X e. X -> ph ) ) |
| 6 |
5
|
pm2.43i |
|- ( X e. X -> ph ) |
| 7 |
|
ax-1 |
|- ( ph -> ( x e. x -> ph ) ) |
| 8 |
7
|
alrimiv |
|- ( ph -> A. x ( x e. x -> ph ) ) |
| 9 |
|
bj-abv |
|- ( A. x ( x e. x -> ph ) -> { x | ( x e. x -> ph ) } = _V ) |
| 10 |
1 9
|
eqtrid |
|- ( A. x ( x e. x -> ph ) -> X = _V ) |
| 11 |
8 10
|
syl |
|- ( ph -> X = _V ) |
| 12 |
|
nvel |
|- -. _V e. V |
| 13 |
|
eleq1 |
|- ( X = _V -> ( X e. V <-> _V e. V ) ) |
| 14 |
12 13
|
mtbiri |
|- ( X = _V -> -. X e. V ) |
| 15 |
4 6 11 14
|
4syl |
|- ( X e. V -> -. X e. V ) |
| 16 |
15
|
pm2.01i |
|- -. X e. V |