Metamath Proof Explorer


Theorem currysetlem3

Description: Lemma for currysetALT . (Contributed by BJ, 23-Sep-2023) This proof is intuitionistically valid. (Proof modification is discouraged.)

Ref Expression
Hypothesis currysetlem2.def
|- X = { x | ( x e. x -> ph ) }
Assertion currysetlem3
|- -. X e. V

Proof

Step Hyp Ref Expression
1 currysetlem2.def
 |-  X = { x | ( x e. x -> ph ) }
2 1 currysetlem2
 |-  ( X e. V -> ( X e. X -> ph ) )
3 1 currysetlem1
 |-  ( X e. V -> ( X e. X <-> ( X e. X -> ph ) ) )
4 2 3 mpbird
 |-  ( X e. V -> X e. X )
5 1 currysetlem2
 |-  ( X e. X -> ( X e. X -> ph ) )
6 5 pm2.43i
 |-  ( X e. X -> ph )
7 ax-1
 |-  ( ph -> ( x e. x -> ph ) )
8 7 alrimiv
 |-  ( ph -> A. x ( x e. x -> ph ) )
9 bj-abv
 |-  ( A. x ( x e. x -> ph ) -> { x | ( x e. x -> ph ) } = _V )
10 1 9 syl5eq
 |-  ( A. x ( x e. x -> ph ) -> X = _V )
11 8 10 syl
 |-  ( ph -> X = _V )
12 nvel
 |-  -. _V e. V
13 eleq1
 |-  ( X = _V -> ( X e. V <-> _V e. V ) )
14 12 13 mtbiri
 |-  ( X = _V -> -. X e. V )
15 4 6 11 14 4syl
 |-  ( X e. V -> -. X e. V )
16 15 bj-pm2.01i
 |-  -. X e. V