| Step | Hyp | Ref | Expression | 
						
							| 1 |  | currysetlem2.def |  |-  X = { x | ( x e. x -> ph ) } | 
						
							| 2 | 1 | currysetlem2 |  |-  ( X e. V -> ( X e. X -> ph ) ) | 
						
							| 3 | 1 | currysetlem1 |  |-  ( X e. V -> ( X e. X <-> ( X e. X -> ph ) ) ) | 
						
							| 4 | 2 3 | mpbird |  |-  ( X e. V -> X e. X ) | 
						
							| 5 | 1 | currysetlem2 |  |-  ( X e. X -> ( X e. X -> ph ) ) | 
						
							| 6 | 5 | pm2.43i |  |-  ( X e. X -> ph ) | 
						
							| 7 |  | ax-1 |  |-  ( ph -> ( x e. x -> ph ) ) | 
						
							| 8 | 7 | alrimiv |  |-  ( ph -> A. x ( x e. x -> ph ) ) | 
						
							| 9 |  | bj-abv |  |-  ( A. x ( x e. x -> ph ) -> { x | ( x e. x -> ph ) } = _V ) | 
						
							| 10 | 1 9 | eqtrid |  |-  ( A. x ( x e. x -> ph ) -> X = _V ) | 
						
							| 11 | 8 10 | syl |  |-  ( ph -> X = _V ) | 
						
							| 12 |  | nvel |  |-  -. _V e. V | 
						
							| 13 |  | eleq1 |  |-  ( X = _V -> ( X e. V <-> _V e. V ) ) | 
						
							| 14 | 12 13 | mtbiri |  |-  ( X = _V -> -. X e. V ) | 
						
							| 15 | 4 6 11 14 | 4syl |  |-  ( X e. V -> -. X e. V ) | 
						
							| 16 | 15 | pm2.01i |  |-  -. X e. V |