Metamath Proof Explorer


Theorem currysetlem3

Description: Lemma for currysetALT . (Contributed by BJ, 23-Sep-2023) This proof is intuitionistically valid. (Proof modification is discouraged.)

Ref Expression
Hypothesis currysetlem2.def 𝑋 = { 𝑥 ∣ ( 𝑥𝑥𝜑 ) }
Assertion currysetlem3 ¬ 𝑋𝑉

Proof

Step Hyp Ref Expression
1 currysetlem2.def 𝑋 = { 𝑥 ∣ ( 𝑥𝑥𝜑 ) }
2 1 currysetlem2 ( 𝑋𝑉 → ( 𝑋𝑋𝜑 ) )
3 1 currysetlem1 ( 𝑋𝑉 → ( 𝑋𝑋 ↔ ( 𝑋𝑋𝜑 ) ) )
4 2 3 mpbird ( 𝑋𝑉𝑋𝑋 )
5 1 currysetlem2 ( 𝑋𝑋 → ( 𝑋𝑋𝜑 ) )
6 5 pm2.43i ( 𝑋𝑋𝜑 )
7 ax-1 ( 𝜑 → ( 𝑥𝑥𝜑 ) )
8 7 alrimiv ( 𝜑 → ∀ 𝑥 ( 𝑥𝑥𝜑 ) )
9 bj-abv ( ∀ 𝑥 ( 𝑥𝑥𝜑 ) → { 𝑥 ∣ ( 𝑥𝑥𝜑 ) } = V )
10 1 9 syl5eq ( ∀ 𝑥 ( 𝑥𝑥𝜑 ) → 𝑋 = V )
11 8 10 syl ( 𝜑𝑋 = V )
12 nvel ¬ V ∈ 𝑉
13 eleq1 ( 𝑋 = V → ( 𝑋𝑉 ↔ V ∈ 𝑉 ) )
14 12 13 mtbiri ( 𝑋 = V → ¬ 𝑋𝑉 )
15 4 6 11 14 4syl ( 𝑋𝑉 → ¬ 𝑋𝑉 )
16 15 bj-pm2.01i ¬ 𝑋𝑉