| Step |
Hyp |
Ref |
Expression |
| 1 |
|
currysetlem2.def |
⊢ 𝑋 = { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } |
| 2 |
1
|
currysetlem2 |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∈ 𝑋 → 𝜑 ) ) |
| 3 |
1
|
currysetlem1 |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∈ 𝑋 ↔ ( 𝑋 ∈ 𝑋 → 𝜑 ) ) ) |
| 4 |
2 3
|
mpbird |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ 𝑋 ) |
| 5 |
1
|
currysetlem2 |
⊢ ( 𝑋 ∈ 𝑋 → ( 𝑋 ∈ 𝑋 → 𝜑 ) ) |
| 6 |
5
|
pm2.43i |
⊢ ( 𝑋 ∈ 𝑋 → 𝜑 ) |
| 7 |
|
ax-1 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑥 → 𝜑 ) ) |
| 8 |
7
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝑥 → 𝜑 ) ) |
| 9 |
|
bj-abv |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑥 → 𝜑 ) → { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } = V ) |
| 10 |
1 9
|
eqtrid |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑥 → 𝜑 ) → 𝑋 = V ) |
| 11 |
8 10
|
syl |
⊢ ( 𝜑 → 𝑋 = V ) |
| 12 |
|
nvel |
⊢ ¬ V ∈ 𝑉 |
| 13 |
|
eleq1 |
⊢ ( 𝑋 = V → ( 𝑋 ∈ 𝑉 ↔ V ∈ 𝑉 ) ) |
| 14 |
12 13
|
mtbiri |
⊢ ( 𝑋 = V → ¬ 𝑋 ∈ 𝑉 ) |
| 15 |
4 6 11 14
|
4syl |
⊢ ( 𝑋 ∈ 𝑉 → ¬ 𝑋 ∈ 𝑉 ) |
| 16 |
15
|
pm2.01i |
⊢ ¬ 𝑋 ∈ 𝑉 |