Step |
Hyp |
Ref |
Expression |
1 |
|
currysetlem2.def |
⊢ 𝑋 = { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } |
2 |
1
|
currysetlem2 |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∈ 𝑋 → 𝜑 ) ) |
3 |
1
|
currysetlem1 |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ∈ 𝑋 ↔ ( 𝑋 ∈ 𝑋 → 𝜑 ) ) ) |
4 |
2 3
|
mpbird |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ 𝑋 ) |
5 |
1
|
currysetlem2 |
⊢ ( 𝑋 ∈ 𝑋 → ( 𝑋 ∈ 𝑋 → 𝜑 ) ) |
6 |
5
|
pm2.43i |
⊢ ( 𝑋 ∈ 𝑋 → 𝜑 ) |
7 |
|
ax-1 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑥 → 𝜑 ) ) |
8 |
7
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝑥 → 𝜑 ) ) |
9 |
|
bj-abv |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑥 → 𝜑 ) → { 𝑥 ∣ ( 𝑥 ∈ 𝑥 → 𝜑 ) } = V ) |
10 |
1 9
|
syl5eq |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑥 → 𝜑 ) → 𝑋 = V ) |
11 |
8 10
|
syl |
⊢ ( 𝜑 → 𝑋 = V ) |
12 |
|
nvel |
⊢ ¬ V ∈ 𝑉 |
13 |
|
eleq1 |
⊢ ( 𝑋 = V → ( 𝑋 ∈ 𝑉 ↔ V ∈ 𝑉 ) ) |
14 |
12 13
|
mtbiri |
⊢ ( 𝑋 = V → ¬ 𝑋 ∈ 𝑉 ) |
15 |
4 6 11 14
|
4syl |
⊢ ( 𝑋 ∈ 𝑉 → ¬ 𝑋 ∈ 𝑉 ) |
16 |
15
|
bj-pm2.01i |
⊢ ¬ 𝑋 ∈ 𝑉 |