| Step | Hyp | Ref | Expression | 
						
							| 1 |  | currysetlem2.def | ⊢ 𝑋  =  { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) } | 
						
							| 2 | 1 | currysetlem2 | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑋  ∈  𝑋  →  𝜑 ) ) | 
						
							| 3 | 1 | currysetlem1 | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑋  ∈  𝑋  ↔  ( 𝑋  ∈  𝑋  →  𝜑 ) ) ) | 
						
							| 4 | 2 3 | mpbird | ⊢ ( 𝑋  ∈  𝑉  →  𝑋  ∈  𝑋 ) | 
						
							| 5 | 1 | currysetlem2 | ⊢ ( 𝑋  ∈  𝑋  →  ( 𝑋  ∈  𝑋  →  𝜑 ) ) | 
						
							| 6 | 5 | pm2.43i | ⊢ ( 𝑋  ∈  𝑋  →  𝜑 ) | 
						
							| 7 |  | ax-1 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑥  →  𝜑 ) ) | 
						
							| 8 | 7 | alrimiv | ⊢ ( 𝜑  →  ∀ 𝑥 ( 𝑥  ∈  𝑥  →  𝜑 ) ) | 
						
							| 9 |  | bj-abv | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝑥  →  𝜑 )  →  { 𝑥  ∣  ( 𝑥  ∈  𝑥  →  𝜑 ) }  =  V ) | 
						
							| 10 | 1 9 | eqtrid | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝑥  →  𝜑 )  →  𝑋  =  V ) | 
						
							| 11 | 8 10 | syl | ⊢ ( 𝜑  →  𝑋  =  V ) | 
						
							| 12 |  | nvel | ⊢ ¬  V  ∈  𝑉 | 
						
							| 13 |  | eleq1 | ⊢ ( 𝑋  =  V  →  ( 𝑋  ∈  𝑉  ↔  V  ∈  𝑉 ) ) | 
						
							| 14 | 12 13 | mtbiri | ⊢ ( 𝑋  =  V  →  ¬  𝑋  ∈  𝑉 ) | 
						
							| 15 | 4 6 11 14 | 4syl | ⊢ ( 𝑋  ∈  𝑉  →  ¬  𝑋  ∈  𝑉 ) | 
						
							| 16 | 15 | pm2.01i | ⊢ ¬  𝑋  ∈  𝑉 |