Metamath Proof Explorer


Theorem currysetlem3

Description: Lemma for currysetALT . (Contributed by BJ, 23-Sep-2023) This proof is intuitionistically valid. (Proof modification is discouraged.)

Ref Expression
Hypothesis currysetlem2.def X = x | x x φ
Assertion currysetlem3 ¬ X V

Proof

Step Hyp Ref Expression
1 currysetlem2.def X = x | x x φ
2 1 currysetlem2 X V X X φ
3 1 currysetlem1 X V X X X X φ
4 2 3 mpbird X V X X
5 1 currysetlem2 X X X X φ
6 5 pm2.43i X X φ
7 ax-1 φ x x φ
8 7 alrimiv φ x x x φ
9 bj-abv x x x φ x | x x φ = V
10 1 9 syl5eq x x x φ X = V
11 8 10 syl φ X = V
12 nvel ¬ V V
13 eleq1 X = V X V V V
14 12 13 mtbiri X = V ¬ X V
15 4 6 11 14 4syl X V ¬ X V
16 15 bj-pm2.01i ¬ X V