Metamath Proof Explorer


Theorem cvlsupr4

Description: Consequence of superposition condition ( P .\/ R ) = ( Q .\/ R ) . (Contributed by NM, 9-Nov-2012)

Ref Expression
Hypotheses cvlsupr2.a 𝐴 = ( Atoms ‘ 𝐾 )
cvlsupr2.l = ( le ‘ 𝐾 )
cvlsupr2.j = ( join ‘ 𝐾 )
Assertion cvlsupr4 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → 𝑅 ( 𝑃 𝑄 ) )

Proof

Step Hyp Ref Expression
1 cvlsupr2.a 𝐴 = ( Atoms ‘ 𝐾 )
2 cvlsupr2.l = ( le ‘ 𝐾 )
3 cvlsupr2.j = ( join ‘ 𝐾 )
4 1 2 3 cvlsupr2 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑄 ) → ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ↔ ( 𝑅𝑃𝑅𝑄𝑅 ( 𝑃 𝑄 ) ) ) )
5 simp3 ( ( 𝑅𝑃𝑅𝑄𝑅 ( 𝑃 𝑄 ) ) → 𝑅 ( 𝑃 𝑄 ) )
6 4 5 syl6bi ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑄 ) → ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) → 𝑅 ( 𝑃 𝑄 ) ) )
7 6 3exp ( 𝐾 ∈ CvLat → ( ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) → ( 𝑃𝑄 → ( ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) → 𝑅 ( 𝑃 𝑄 ) ) ) ) )
8 7 imp4a ( 𝐾 ∈ CvLat → ( ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) → ( ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) → 𝑅 ( 𝑃 𝑄 ) ) ) )
9 8 3imp ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → 𝑅 ( 𝑃 𝑄 ) )