Metamath Proof Explorer


Theorem cvmopn

Description: A covering map is an open map. (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Assertion cvmopn ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴𝐶 ) → ( 𝐹𝐴 ) ∈ 𝐽 )

Proof

Step Hyp Ref Expression
1 eqid ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } ) = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
2 eqid 𝐶 = 𝐶
3 1 2 cvmopnlem ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴𝐶 ) → ( 𝐹𝐴 ) ∈ 𝐽 )