| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftmo.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 2 |  | cvmliftmo.y | ⊢ 𝑌  =  ∪  𝐾 | 
						
							| 3 |  | cvmliftmo.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 4 |  | cvmliftmo.k | ⊢ ( 𝜑  →  𝐾  ∈  Conn ) | 
						
							| 5 |  | cvmliftmo.l | ⊢ ( 𝜑  →  𝐾  ∈  𝑛-Locally  Conn ) | 
						
							| 6 |  | cvmliftmo.o | ⊢ ( 𝜑  →  𝑂  ∈  𝑌 ) | 
						
							| 7 |  | cvmliftmoi.m | ⊢ ( 𝜑  →  𝑀  ∈  ( 𝐾  Cn  𝐶 ) ) | 
						
							| 8 |  | cvmliftmoi.n | ⊢ ( 𝜑  →  𝑁  ∈  ( 𝐾  Cn  𝐶 ) ) | 
						
							| 9 |  | cvmliftmoi.g | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝑀 )  =  ( 𝐹  ∘  𝑁 ) ) | 
						
							| 10 |  | cvmliftmoi.p | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑂 )  =  ( 𝑁 ‘ 𝑂 ) ) | 
						
							| 11 |  | cvmliftmolem.1 | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 12 |  | cvmliftmolem.2 | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑇  ∈  ( 𝑆 ‘ 𝑈 ) ) | 
						
							| 13 |  | cvmliftmolem.3 | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑊  ∈  𝑇 ) | 
						
							| 14 |  | cvmliftmolem.4 | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐼  ⊆  ( ◡ 𝑀  “  𝑊 ) ) | 
						
							| 15 |  | cvmliftmolem.5 | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝐾  ↾t  𝐼 )  ∈  Conn ) | 
						
							| 16 |  | cvmliftmolem.6 | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑋  ∈  𝐼 ) | 
						
							| 17 |  | cvmliftmolem.7 | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑄  ∈  𝐼 ) | 
						
							| 18 |  | cvmliftmolem.8 | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑅  ∈  𝐼 ) | 
						
							| 19 |  | cvmliftmolem.9 | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝐹 ‘ ( 𝑀 ‘ 𝑋 ) )  ∈  𝑈 ) | 
						
							| 20 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝐹  ∘  𝑀 )  =  ( 𝐹  ∘  𝑁 ) ) | 
						
							| 21 | 20 | fveq1d | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( 𝐹  ∘  𝑀 ) ‘ 𝑅 )  =  ( ( 𝐹  ∘  𝑁 ) ‘ 𝑅 ) ) | 
						
							| 22 | 14 18 | sseldd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑅  ∈  ( ◡ 𝑀  “  𝑊 ) ) | 
						
							| 23 | 2 1 | cnf | ⊢ ( 𝑀  ∈  ( 𝐾  Cn  𝐶 )  →  𝑀 : 𝑌 ⟶ 𝐵 ) | 
						
							| 24 | 7 23 | syl | ⊢ ( 𝜑  →  𝑀 : 𝑌 ⟶ 𝐵 ) | 
						
							| 25 | 24 | ffnd | ⊢ ( 𝜑  →  𝑀  Fn  𝑌 ) | 
						
							| 26 |  | elpreima | ⊢ ( 𝑀  Fn  𝑌  →  ( 𝑅  ∈  ( ◡ 𝑀  “  𝑊 )  ↔  ( 𝑅  ∈  𝑌  ∧  ( 𝑀 ‘ 𝑅 )  ∈  𝑊 ) ) ) | 
						
							| 27 | 25 26 | syl | ⊢ ( 𝜑  →  ( 𝑅  ∈  ( ◡ 𝑀  “  𝑊 )  ↔  ( 𝑅  ∈  𝑌  ∧  ( 𝑀 ‘ 𝑅 )  ∈  𝑊 ) ) ) | 
						
							| 28 | 27 | simprbda | ⊢ ( ( 𝜑  ∧  𝑅  ∈  ( ◡ 𝑀  “  𝑊 ) )  →  𝑅  ∈  𝑌 ) | 
						
							| 29 | 22 28 | syldan | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑅  ∈  𝑌 ) | 
						
							| 30 |  | fvco3 | ⊢ ( ( 𝑀 : 𝑌 ⟶ 𝐵  ∧  𝑅  ∈  𝑌 )  →  ( ( 𝐹  ∘  𝑀 ) ‘ 𝑅 )  =  ( 𝐹 ‘ ( 𝑀 ‘ 𝑅 ) ) ) | 
						
							| 31 | 24 30 | sylan | ⊢ ( ( 𝜑  ∧  𝑅  ∈  𝑌 )  →  ( ( 𝐹  ∘  𝑀 ) ‘ 𝑅 )  =  ( 𝐹 ‘ ( 𝑀 ‘ 𝑅 ) ) ) | 
						
							| 32 | 29 31 | syldan | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( 𝐹  ∘  𝑀 ) ‘ 𝑅 )  =  ( 𝐹 ‘ ( 𝑀 ‘ 𝑅 ) ) ) | 
						
							| 33 | 2 1 | cnf | ⊢ ( 𝑁  ∈  ( 𝐾  Cn  𝐶 )  →  𝑁 : 𝑌 ⟶ 𝐵 ) | 
						
							| 34 | 8 33 | syl | ⊢ ( 𝜑  →  𝑁 : 𝑌 ⟶ 𝐵 ) | 
						
							| 35 |  | fvco3 | ⊢ ( ( 𝑁 : 𝑌 ⟶ 𝐵  ∧  𝑅  ∈  𝑌 )  →  ( ( 𝐹  ∘  𝑁 ) ‘ 𝑅 )  =  ( 𝐹 ‘ ( 𝑁 ‘ 𝑅 ) ) ) | 
						
							| 36 | 34 35 | sylan | ⊢ ( ( 𝜑  ∧  𝑅  ∈  𝑌 )  →  ( ( 𝐹  ∘  𝑁 ) ‘ 𝑅 )  =  ( 𝐹 ‘ ( 𝑁 ‘ 𝑅 ) ) ) | 
						
							| 37 | 29 36 | syldan | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( 𝐹  ∘  𝑁 ) ‘ 𝑅 )  =  ( 𝐹 ‘ ( 𝑁 ‘ 𝑅 ) ) ) | 
						
							| 38 | 21 32 37 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝐹 ‘ ( 𝑀 ‘ 𝑅 ) )  =  ( 𝐹 ‘ ( 𝑁 ‘ 𝑅 ) ) ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) )  →  ( 𝐹 ‘ ( 𝑀 ‘ 𝑅 ) )  =  ( 𝐹 ‘ ( 𝑁 ‘ 𝑅 ) ) ) | 
						
							| 40 | 27 | simplbda | ⊢ ( ( 𝜑  ∧  𝑅  ∈  ( ◡ 𝑀  “  𝑊 ) )  →  ( 𝑀 ‘ 𝑅 )  ∈  𝑊 ) | 
						
							| 41 | 22 40 | syldan | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑀 ‘ 𝑅 )  ∈  𝑊 ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) )  →  ( 𝑀 ‘ 𝑅 )  ∈  𝑊 ) | 
						
							| 43 |  | fvres | ⊢ ( ( 𝑀 ‘ 𝑅 )  ∈  𝑊  →  ( ( 𝐹  ↾  𝑊 ) ‘ ( 𝑀 ‘ 𝑅 ) )  =  ( 𝐹 ‘ ( 𝑀 ‘ 𝑅 ) ) ) | 
						
							| 44 | 42 43 | syl | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) )  →  ( ( 𝐹  ↾  𝑊 ) ‘ ( 𝑀 ‘ 𝑅 ) )  =  ( 𝐹 ‘ ( 𝑀 ‘ 𝑅 ) ) ) | 
						
							| 45 | 18 | adantr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) )  →  𝑅  ∈  𝐼 ) | 
						
							| 46 |  | fvres | ⊢ ( 𝑅  ∈  𝐼  →  ( ( 𝑁  ↾  𝐼 ) ‘ 𝑅 )  =  ( 𝑁 ‘ 𝑅 ) ) | 
						
							| 47 | 45 46 | syl | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) )  →  ( ( 𝑁  ↾  𝐼 ) ‘ 𝑅 )  =  ( 𝑁 ‘ 𝑅 ) ) | 
						
							| 48 |  | eqid | ⊢ ∪  ( 𝐾  ↾t  𝐼 )  =  ∪  ( 𝐾  ↾t  𝐼 ) | 
						
							| 49 | 15 | adantr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) )  →  ( 𝐾  ↾t  𝐼 )  ∈  Conn ) | 
						
							| 50 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑁  ∈  ( 𝐾  Cn  𝐶 ) ) | 
						
							| 51 |  | cnvimass | ⊢ ( ◡ 𝑀  “  𝑊 )  ⊆  dom  𝑀 | 
						
							| 52 | 51 24 | fssdm | ⊢ ( 𝜑  →  ( ◡ 𝑀  “  𝑊 )  ⊆  𝑌 ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ◡ 𝑀  “  𝑊 )  ⊆  𝑌 ) | 
						
							| 54 | 14 53 | sstrd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐼  ⊆  𝑌 ) | 
						
							| 55 | 2 | cnrest | ⊢ ( ( 𝑁  ∈  ( 𝐾  Cn  𝐶 )  ∧  𝐼  ⊆  𝑌 )  →  ( 𝑁  ↾  𝐼 )  ∈  ( ( 𝐾  ↾t  𝐼 )  Cn  𝐶 ) ) | 
						
							| 56 | 50 54 55 | syl2anc | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑁  ↾  𝐼 )  ∈  ( ( 𝐾  ↾t  𝐼 )  Cn  𝐶 ) ) | 
						
							| 57 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 58 |  | cvmtop1 | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐶  ∈  Top ) | 
						
							| 59 | 57 58 | syl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐶  ∈  Top ) | 
						
							| 60 | 1 | toptopon | ⊢ ( 𝐶  ∈  Top  ↔  𝐶  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 61 | 59 60 | sylib | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐶  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 62 |  | df-ima | ⊢ ( 𝑁  “  𝐼 )  =  ran  ( 𝑁  ↾  𝐼 ) | 
						
							| 63 |  | elssuni | ⊢ ( 𝑊  ∈  𝑇  →  𝑊  ⊆  ∪  𝑇 ) | 
						
							| 64 | 13 63 | syl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑊  ⊆  ∪  𝑇 ) | 
						
							| 65 | 11 | cvmsuni | ⊢ ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  →  ∪  𝑇  =  ( ◡ 𝐹  “  𝑈 ) ) | 
						
							| 66 | 12 65 | syl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ∪  𝑇  =  ( ◡ 𝐹  “  𝑈 ) ) | 
						
							| 67 | 64 66 | sseqtrd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑊  ⊆  ( ◡ 𝐹  “  𝑈 ) ) | 
						
							| 68 |  | imass2 | ⊢ ( 𝑊  ⊆  ( ◡ 𝐹  “  𝑈 )  →  ( ◡ 𝑀  “  𝑊 )  ⊆  ( ◡ 𝑀  “  ( ◡ 𝐹  “  𝑈 ) ) ) | 
						
							| 69 | 67 68 | syl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ◡ 𝑀  “  𝑊 )  ⊆  ( ◡ 𝑀  “  ( ◡ 𝐹  “  𝑈 ) ) ) | 
						
							| 70 | 14 69 | sstrd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐼  ⊆  ( ◡ 𝑀  “  ( ◡ 𝐹  “  𝑈 ) ) ) | 
						
							| 71 | 20 | cnveqd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ◡ ( 𝐹  ∘  𝑀 )  =  ◡ ( 𝐹  ∘  𝑁 ) ) | 
						
							| 72 |  | cnvco | ⊢ ◡ ( 𝐹  ∘  𝑀 )  =  ( ◡ 𝑀  ∘  ◡ 𝐹 ) | 
						
							| 73 |  | cnvco | ⊢ ◡ ( 𝐹  ∘  𝑁 )  =  ( ◡ 𝑁  ∘  ◡ 𝐹 ) | 
						
							| 74 | 71 72 73 | 3eqtr3g | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ◡ 𝑀  ∘  ◡ 𝐹 )  =  ( ◡ 𝑁  ∘  ◡ 𝐹 ) ) | 
						
							| 75 | 74 | imaeq1d | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( ◡ 𝑀  ∘  ◡ 𝐹 )  “  𝑈 )  =  ( ( ◡ 𝑁  ∘  ◡ 𝐹 )  “  𝑈 ) ) | 
						
							| 76 |  | imaco | ⊢ ( ( ◡ 𝑀  ∘  ◡ 𝐹 )  “  𝑈 )  =  ( ◡ 𝑀  “  ( ◡ 𝐹  “  𝑈 ) ) | 
						
							| 77 |  | imaco | ⊢ ( ( ◡ 𝑁  ∘  ◡ 𝐹 )  “  𝑈 )  =  ( ◡ 𝑁  “  ( ◡ 𝐹  “  𝑈 ) ) | 
						
							| 78 | 75 76 77 | 3eqtr3g | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ◡ 𝑀  “  ( ◡ 𝐹  “  𝑈 ) )  =  ( ◡ 𝑁  “  ( ◡ 𝐹  “  𝑈 ) ) ) | 
						
							| 79 | 70 78 | sseqtrd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐼  ⊆  ( ◡ 𝑁  “  ( ◡ 𝐹  “  𝑈 ) ) ) | 
						
							| 80 | 34 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑁 : 𝑌 ⟶ 𝐵 ) | 
						
							| 81 | 80 | ffund | ⊢ ( ( 𝜑  ∧  𝜓 )  →  Fun  𝑁 ) | 
						
							| 82 | 80 | fdmd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  dom  𝑁  =  𝑌 ) | 
						
							| 83 | 54 82 | sseqtrrd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐼  ⊆  dom  𝑁 ) | 
						
							| 84 |  | funimass3 | ⊢ ( ( Fun  𝑁  ∧  𝐼  ⊆  dom  𝑁 )  →  ( ( 𝑁  “  𝐼 )  ⊆  ( ◡ 𝐹  “  𝑈 )  ↔  𝐼  ⊆  ( ◡ 𝑁  “  ( ◡ 𝐹  “  𝑈 ) ) ) ) | 
						
							| 85 | 81 83 84 | syl2anc | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( 𝑁  “  𝐼 )  ⊆  ( ◡ 𝐹  “  𝑈 )  ↔  𝐼  ⊆  ( ◡ 𝑁  “  ( ◡ 𝐹  “  𝑈 ) ) ) ) | 
						
							| 86 | 79 85 | mpbird | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑁  “  𝐼 )  ⊆  ( ◡ 𝐹  “  𝑈 ) ) | 
						
							| 87 | 62 86 | eqsstrrid | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ran  ( 𝑁  ↾  𝐼 )  ⊆  ( ◡ 𝐹  “  𝑈 ) ) | 
						
							| 88 |  | cnvimass | ⊢ ( ◡ 𝐹  “  𝑈 )  ⊆  dom  𝐹 | 
						
							| 89 |  | cvmcn | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐹  ∈  ( 𝐶  Cn  𝐽 ) ) | 
						
							| 90 | 3 89 | syl | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  Cn  𝐽 ) ) | 
						
							| 91 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 92 | 1 91 | cnf | ⊢ ( 𝐹  ∈  ( 𝐶  Cn  𝐽 )  →  𝐹 : 𝐵 ⟶ ∪  𝐽 ) | 
						
							| 93 | 90 92 | syl | ⊢ ( 𝜑  →  𝐹 : 𝐵 ⟶ ∪  𝐽 ) | 
						
							| 94 | 93 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  𝐵 ) | 
						
							| 95 | 94 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  dom  𝐹  =  𝐵 ) | 
						
							| 96 | 88 95 | sseqtrid | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ◡ 𝐹  “  𝑈 )  ⊆  𝐵 ) | 
						
							| 97 |  | cnrest2 | ⊢ ( ( 𝐶  ∈  ( TopOn ‘ 𝐵 )  ∧  ran  ( 𝑁  ↾  𝐼 )  ⊆  ( ◡ 𝐹  “  𝑈 )  ∧  ( ◡ 𝐹  “  𝑈 )  ⊆  𝐵 )  →  ( ( 𝑁  ↾  𝐼 )  ∈  ( ( 𝐾  ↾t  𝐼 )  Cn  𝐶 )  ↔  ( 𝑁  ↾  𝐼 )  ∈  ( ( 𝐾  ↾t  𝐼 )  Cn  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) ) ) ) ) | 
						
							| 98 | 61 87 96 97 | syl3anc | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( 𝑁  ↾  𝐼 )  ∈  ( ( 𝐾  ↾t  𝐼 )  Cn  𝐶 )  ↔  ( 𝑁  ↾  𝐼 )  ∈  ( ( 𝐾  ↾t  𝐼 )  Cn  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) ) ) ) ) | 
						
							| 99 | 56 98 | mpbid | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑁  ↾  𝐼 )  ∈  ( ( 𝐾  ↾t  𝐼 )  Cn  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) ) ) ) | 
						
							| 100 | 99 | adantr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) )  →  ( 𝑁  ↾  𝐼 )  ∈  ( ( 𝐾  ↾t  𝐼 )  Cn  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) ) ) ) | 
						
							| 101 |  | dfss2 | ⊢ ( 𝑊  ⊆  ( ◡ 𝐹  “  𝑈 )  ↔  ( 𝑊  ∩  ( ◡ 𝐹  “  𝑈 ) )  =  𝑊 ) | 
						
							| 102 | 67 101 | sylib | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑊  ∩  ( ◡ 𝐹  “  𝑈 ) )  =  𝑊 ) | 
						
							| 103 | 1 | topopn | ⊢ ( 𝐶  ∈  Top  →  𝐵  ∈  𝐶 ) | 
						
							| 104 | 59 103 | syl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐵  ∈  𝐶 ) | 
						
							| 105 | 104 96 | ssexd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ◡ 𝐹  “  𝑈 )  ∈  V ) | 
						
							| 106 | 11 | cvmsss | ⊢ ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  →  𝑇  ⊆  𝐶 ) | 
						
							| 107 | 12 106 | syl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑇  ⊆  𝐶 ) | 
						
							| 108 | 107 13 | sseldd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑊  ∈  𝐶 ) | 
						
							| 109 |  | elrestr | ⊢ ( ( 𝐶  ∈  Top  ∧  ( ◡ 𝐹  “  𝑈 )  ∈  V  ∧  𝑊  ∈  𝐶 )  →  ( 𝑊  ∩  ( ◡ 𝐹  “  𝑈 ) )  ∈  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) ) ) | 
						
							| 110 | 59 105 108 109 | syl3anc | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑊  ∩  ( ◡ 𝐹  “  𝑈 ) )  ∈  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) ) ) | 
						
							| 111 | 102 110 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑊  ∈  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) ) ) | 
						
							| 112 | 111 | adantr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) )  →  𝑊  ∈  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) ) ) | 
						
							| 113 | 11 | cvmscld | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝑊  ∈  𝑇 )  →  𝑊  ∈  ( Clsd ‘ ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) ) ) ) | 
						
							| 114 | 57 12 13 113 | syl3anc | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑊  ∈  ( Clsd ‘ ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) ) ) ) | 
						
							| 115 | 114 | adantr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) )  →  𝑊  ∈  ( Clsd ‘ ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑈 ) ) ) ) | 
						
							| 116 |  | conntop | ⊢ ( 𝐾  ∈  Conn  →  𝐾  ∈  Top ) | 
						
							| 117 | 4 116 | syl | ⊢ ( 𝜑  →  𝐾  ∈  Top ) | 
						
							| 118 | 117 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐾  ∈  Top ) | 
						
							| 119 | 2 | restuni | ⊢ ( ( 𝐾  ∈  Top  ∧  𝐼  ⊆  𝑌 )  →  𝐼  =  ∪  ( 𝐾  ↾t  𝐼 ) ) | 
						
							| 120 | 118 54 119 | syl2anc | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐼  =  ∪  ( 𝐾  ↾t  𝐼 ) ) | 
						
							| 121 | 17 120 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑄  ∈  ∪  ( 𝐾  ↾t  𝐼 ) ) | 
						
							| 122 | 121 | adantr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) )  →  𝑄  ∈  ∪  ( 𝐾  ↾t  𝐼 ) ) | 
						
							| 123 | 17 | adantr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) )  →  𝑄  ∈  𝐼 ) | 
						
							| 124 |  | fvres | ⊢ ( 𝑄  ∈  𝐼  →  ( ( 𝑁  ↾  𝐼 ) ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) ) | 
						
							| 125 | 123 124 | syl | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) )  →  ( ( 𝑁  ↾  𝐼 ) ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) ) | 
						
							| 126 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) )  →  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) ) | 
						
							| 127 | 14 17 | sseldd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑄  ∈  ( ◡ 𝑀  “  𝑊 ) ) | 
						
							| 128 |  | elpreima | ⊢ ( 𝑀  Fn  𝑌  →  ( 𝑄  ∈  ( ◡ 𝑀  “  𝑊 )  ↔  ( 𝑄  ∈  𝑌  ∧  ( 𝑀 ‘ 𝑄 )  ∈  𝑊 ) ) ) | 
						
							| 129 | 25 128 | syl | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( ◡ 𝑀  “  𝑊 )  ↔  ( 𝑄  ∈  𝑌  ∧  ( 𝑀 ‘ 𝑄 )  ∈  𝑊 ) ) ) | 
						
							| 130 | 129 | simplbda | ⊢ ( ( 𝜑  ∧  𝑄  ∈  ( ◡ 𝑀  “  𝑊 ) )  →  ( 𝑀 ‘ 𝑄 )  ∈  𝑊 ) | 
						
							| 131 | 127 130 | syldan | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑀 ‘ 𝑄 )  ∈  𝑊 ) | 
						
							| 132 | 131 | adantr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) )  →  ( 𝑀 ‘ 𝑄 )  ∈  𝑊 ) | 
						
							| 133 | 126 132 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) )  →  ( 𝑁 ‘ 𝑄 )  ∈  𝑊 ) | 
						
							| 134 | 125 133 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) )  →  ( ( 𝑁  ↾  𝐼 ) ‘ 𝑄 )  ∈  𝑊 ) | 
						
							| 135 | 48 49 100 112 115 122 134 | conncn | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) )  →  ( 𝑁  ↾  𝐼 ) : ∪  ( 𝐾  ↾t  𝐼 ) ⟶ 𝑊 ) | 
						
							| 136 | 120 | adantr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) )  →  𝐼  =  ∪  ( 𝐾  ↾t  𝐼 ) ) | 
						
							| 137 | 136 | feq2d | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) )  →  ( ( 𝑁  ↾  𝐼 ) : 𝐼 ⟶ 𝑊  ↔  ( 𝑁  ↾  𝐼 ) : ∪  ( 𝐾  ↾t  𝐼 ) ⟶ 𝑊 ) ) | 
						
							| 138 | 135 137 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) )  →  ( 𝑁  ↾  𝐼 ) : 𝐼 ⟶ 𝑊 ) | 
						
							| 139 | 138 45 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) )  →  ( ( 𝑁  ↾  𝐼 ) ‘ 𝑅 )  ∈  𝑊 ) | 
						
							| 140 | 47 139 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) )  →  ( 𝑁 ‘ 𝑅 )  ∈  𝑊 ) | 
						
							| 141 |  | fvres | ⊢ ( ( 𝑁 ‘ 𝑅 )  ∈  𝑊  →  ( ( 𝐹  ↾  𝑊 ) ‘ ( 𝑁 ‘ 𝑅 ) )  =  ( 𝐹 ‘ ( 𝑁 ‘ 𝑅 ) ) ) | 
						
							| 142 | 140 141 | syl | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) )  →  ( ( 𝐹  ↾  𝑊 ) ‘ ( 𝑁 ‘ 𝑅 ) )  =  ( 𝐹 ‘ ( 𝑁 ‘ 𝑅 ) ) ) | 
						
							| 143 | 39 44 142 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) )  →  ( ( 𝐹  ↾  𝑊 ) ‘ ( 𝑀 ‘ 𝑅 ) )  =  ( ( 𝐹  ↾  𝑊 ) ‘ ( 𝑁 ‘ 𝑅 ) ) ) | 
						
							| 144 | 11 | cvmsf1o | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝑊  ∈  𝑇 )  →  ( 𝐹  ↾  𝑊 ) : 𝑊 –1-1-onto→ 𝑈 ) | 
						
							| 145 | 57 12 13 144 | syl3anc | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝐹  ↾  𝑊 ) : 𝑊 –1-1-onto→ 𝑈 ) | 
						
							| 146 |  | f1of1 | ⊢ ( ( 𝐹  ↾  𝑊 ) : 𝑊 –1-1-onto→ 𝑈  →  ( 𝐹  ↾  𝑊 ) : 𝑊 –1-1→ 𝑈 ) | 
						
							| 147 | 145 146 | syl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝐹  ↾  𝑊 ) : 𝑊 –1-1→ 𝑈 ) | 
						
							| 148 | 147 | adantr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) )  →  ( 𝐹  ↾  𝑊 ) : 𝑊 –1-1→ 𝑈 ) | 
						
							| 149 |  | f1fveq | ⊢ ( ( ( 𝐹  ↾  𝑊 ) : 𝑊 –1-1→ 𝑈  ∧  ( ( 𝑀 ‘ 𝑅 )  ∈  𝑊  ∧  ( 𝑁 ‘ 𝑅 )  ∈  𝑊 ) )  →  ( ( ( 𝐹  ↾  𝑊 ) ‘ ( 𝑀 ‘ 𝑅 ) )  =  ( ( 𝐹  ↾  𝑊 ) ‘ ( 𝑁 ‘ 𝑅 ) )  ↔  ( 𝑀 ‘ 𝑅 )  =  ( 𝑁 ‘ 𝑅 ) ) ) | 
						
							| 150 | 148 42 140 149 | syl12anc | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) )  →  ( ( ( 𝐹  ↾  𝑊 ) ‘ ( 𝑀 ‘ 𝑅 ) )  =  ( ( 𝐹  ↾  𝑊 ) ‘ ( 𝑁 ‘ 𝑅 ) )  ↔  ( 𝑀 ‘ 𝑅 )  =  ( 𝑁 ‘ 𝑅 ) ) ) | 
						
							| 151 | 143 150 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) )  →  ( 𝑀 ‘ 𝑅 )  =  ( 𝑁 ‘ 𝑅 ) ) | 
						
							| 152 | 151 | ex | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 )  →  ( 𝑀 ‘ 𝑅 )  =  ( 𝑁 ‘ 𝑅 ) ) ) | 
						
							| 153 | 129 | simprbda | ⊢ ( ( 𝜑  ∧  𝑄  ∈  ( ◡ 𝑀  “  𝑊 ) )  →  𝑄  ∈  𝑌 ) | 
						
							| 154 | 127 153 | syldan | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑄  ∈  𝑌 ) | 
						
							| 155 |  | fveq2 | ⊢ ( 𝑥  =  𝑄  →  ( 𝑀 ‘ 𝑥 )  =  ( 𝑀 ‘ 𝑄 ) ) | 
						
							| 156 |  | fveq2 | ⊢ ( 𝑥  =  𝑄  →  ( 𝑁 ‘ 𝑥 )  =  ( 𝑁 ‘ 𝑄 ) ) | 
						
							| 157 | 155 156 | eqeq12d | ⊢ ( 𝑥  =  𝑄  →  ( ( 𝑀 ‘ 𝑥 )  =  ( 𝑁 ‘ 𝑥 )  ↔  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) ) ) | 
						
							| 158 | 157 | elrab3 | ⊢ ( 𝑄  ∈  𝑌  →  ( 𝑄  ∈  { 𝑥  ∈  𝑌  ∣  ( 𝑀 ‘ 𝑥 )  =  ( 𝑁 ‘ 𝑥 ) }  ↔  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) ) ) | 
						
							| 159 | 154 158 | syl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑄  ∈  { 𝑥  ∈  𝑌  ∣  ( 𝑀 ‘ 𝑥 )  =  ( 𝑁 ‘ 𝑥 ) }  ↔  ( 𝑀 ‘ 𝑄 )  =  ( 𝑁 ‘ 𝑄 ) ) ) | 
						
							| 160 |  | fveq2 | ⊢ ( 𝑥  =  𝑅  →  ( 𝑀 ‘ 𝑥 )  =  ( 𝑀 ‘ 𝑅 ) ) | 
						
							| 161 |  | fveq2 | ⊢ ( 𝑥  =  𝑅  →  ( 𝑁 ‘ 𝑥 )  =  ( 𝑁 ‘ 𝑅 ) ) | 
						
							| 162 | 160 161 | eqeq12d | ⊢ ( 𝑥  =  𝑅  →  ( ( 𝑀 ‘ 𝑥 )  =  ( 𝑁 ‘ 𝑥 )  ↔  ( 𝑀 ‘ 𝑅 )  =  ( 𝑁 ‘ 𝑅 ) ) ) | 
						
							| 163 | 162 | elrab3 | ⊢ ( 𝑅  ∈  𝑌  →  ( 𝑅  ∈  { 𝑥  ∈  𝑌  ∣  ( 𝑀 ‘ 𝑥 )  =  ( 𝑁 ‘ 𝑥 ) }  ↔  ( 𝑀 ‘ 𝑅 )  =  ( 𝑁 ‘ 𝑅 ) ) ) | 
						
							| 164 | 29 163 | syl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑅  ∈  { 𝑥  ∈  𝑌  ∣  ( 𝑀 ‘ 𝑥 )  =  ( 𝑁 ‘ 𝑥 ) }  ↔  ( 𝑀 ‘ 𝑅 )  =  ( 𝑁 ‘ 𝑅 ) ) ) | 
						
							| 165 | 152 159 164 | 3imtr4d | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑄  ∈  { 𝑥  ∈  𝑌  ∣  ( 𝑀 ‘ 𝑥 )  =  ( 𝑁 ‘ 𝑥 ) }  →  𝑅  ∈  { 𝑥  ∈  𝑌  ∣  ( 𝑀 ‘ 𝑥 )  =  ( 𝑁 ‘ 𝑥 ) } ) ) | 
						
							| 166 | 34 | ffnd | ⊢ ( 𝜑  →  𝑁  Fn  𝑌 ) | 
						
							| 167 |  | fndmin | ⊢ ( ( 𝑀  Fn  𝑌  ∧  𝑁  Fn  𝑌 )  →  dom  ( 𝑀  ∩  𝑁 )  =  { 𝑥  ∈  𝑌  ∣  ( 𝑀 ‘ 𝑥 )  =  ( 𝑁 ‘ 𝑥 ) } ) | 
						
							| 168 | 25 166 167 | syl2anc | ⊢ ( 𝜑  →  dom  ( 𝑀  ∩  𝑁 )  =  { 𝑥  ∈  𝑌  ∣  ( 𝑀 ‘ 𝑥 )  =  ( 𝑁 ‘ 𝑥 ) } ) | 
						
							| 169 | 168 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  dom  ( 𝑀  ∩  𝑁 )  =  { 𝑥  ∈  𝑌  ∣  ( 𝑀 ‘ 𝑥 )  =  ( 𝑁 ‘ 𝑥 ) } ) | 
						
							| 170 | 169 | eleq2d | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑄  ∈  dom  ( 𝑀  ∩  𝑁 )  ↔  𝑄  ∈  { 𝑥  ∈  𝑌  ∣  ( 𝑀 ‘ 𝑥 )  =  ( 𝑁 ‘ 𝑥 ) } ) ) | 
						
							| 171 | 169 | eleq2d | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑅  ∈  dom  ( 𝑀  ∩  𝑁 )  ↔  𝑅  ∈  { 𝑥  ∈  𝑌  ∣  ( 𝑀 ‘ 𝑥 )  =  ( 𝑁 ‘ 𝑥 ) } ) ) | 
						
							| 172 | 165 170 171 | 3imtr4d | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑄  ∈  dom  ( 𝑀  ∩  𝑁 )  →  𝑅  ∈  dom  ( 𝑀  ∩  𝑁 ) ) ) |