| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmcov.1 | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 2 | 1 | cvmsi | ⊢ ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  →  ( 𝑈  ∈  𝐽  ∧  ( 𝑇  ⊆  𝐶  ∧  𝑇  ≠  ∅ )  ∧  ( ∪  𝑇  =  ( ◡ 𝐹  “  𝑈 )  ∧  ∀ 𝑢  ∈  𝑇 ( ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) ) ) | 
						
							| 3 | 2 | simp3d | ⊢ ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  →  ( ∪  𝑇  =  ( ◡ 𝐹  “  𝑈 )  ∧  ∀ 𝑢  ∈  𝑇 ( ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) ) | 
						
							| 4 | 3 | simpld | ⊢ ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  →  ∪  𝑇  =  ( ◡ 𝐹  “  𝑈 ) ) |