| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmcov.1 | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 2 |  | df-ne | ⊢ ( 𝐴  ≠  𝐵  ↔  ¬  𝐴  =  𝐵 ) | 
						
							| 3 | 1 | cvmsi | ⊢ ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  →  ( 𝑈  ∈  𝐽  ∧  ( 𝑇  ⊆  𝐶  ∧  𝑇  ≠  ∅ )  ∧  ( ∪  𝑇  =  ( ◡ 𝐹  “  𝑈 )  ∧  ∀ 𝑢  ∈  𝑇 ( ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) ) ) | 
						
							| 4 | 3 | simp3d | ⊢ ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  →  ( ∪  𝑇  =  ( ◡ 𝐹  “  𝑈 )  ∧  ∀ 𝑢  ∈  𝑇 ( ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) ) | 
						
							| 5 | 4 | simprd | ⊢ ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  →  ∀ 𝑢  ∈  𝑇 ( ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) ) | 
						
							| 6 |  | simpl | ⊢ ( ( ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) )  →  ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅ ) | 
						
							| 7 | 6 | ralimi | ⊢ ( ∀ 𝑢  ∈  𝑇 ( ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑈 ) ) )  →  ∀ 𝑢  ∈  𝑇 ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅ ) | 
						
							| 8 | 5 7 | syl | ⊢ ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  →  ∀ 𝑢  ∈  𝑇 ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅ ) | 
						
							| 9 |  | sneq | ⊢ ( 𝑢  =  𝐴  →  { 𝑢 }  =  { 𝐴 } ) | 
						
							| 10 | 9 | difeq2d | ⊢ ( 𝑢  =  𝐴  →  ( 𝑇  ∖  { 𝑢 } )  =  ( 𝑇  ∖  { 𝐴 } ) ) | 
						
							| 11 |  | ineq1 | ⊢ ( 𝑢  =  𝐴  →  ( 𝑢  ∩  𝑣 )  =  ( 𝐴  ∩  𝑣 ) ) | 
						
							| 12 | 11 | eqeq1d | ⊢ ( 𝑢  =  𝐴  →  ( ( 𝑢  ∩  𝑣 )  =  ∅  ↔  ( 𝐴  ∩  𝑣 )  =  ∅ ) ) | 
						
							| 13 | 10 12 | raleqbidv | ⊢ ( 𝑢  =  𝐴  →  ( ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ↔  ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝐴 } ) ( 𝐴  ∩  𝑣 )  =  ∅ ) ) | 
						
							| 14 | 13 | rspccva | ⊢ ( ( ∀ 𝑢  ∈  𝑇 ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  𝐴  ∈  𝑇 )  →  ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝐴 } ) ( 𝐴  ∩  𝑣 )  =  ∅ ) | 
						
							| 15 | 8 14 | sylan | ⊢ ( ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝐴 } ) ( 𝐴  ∩  𝑣 )  =  ∅ ) | 
						
							| 16 |  | necom | ⊢ ( 𝐴  ≠  𝐵  ↔  𝐵  ≠  𝐴 ) | 
						
							| 17 |  | eldifsn | ⊢ ( 𝐵  ∈  ( 𝑇  ∖  { 𝐴 } )  ↔  ( 𝐵  ∈  𝑇  ∧  𝐵  ≠  𝐴 ) ) | 
						
							| 18 | 17 | biimpri | ⊢ ( ( 𝐵  ∈  𝑇  ∧  𝐵  ≠  𝐴 )  →  𝐵  ∈  ( 𝑇  ∖  { 𝐴 } ) ) | 
						
							| 19 | 16 18 | sylan2b | ⊢ ( ( 𝐵  ∈  𝑇  ∧  𝐴  ≠  𝐵 )  →  𝐵  ∈  ( 𝑇  ∖  { 𝐴 } ) ) | 
						
							| 20 |  | ineq2 | ⊢ ( 𝑣  =  𝐵  →  ( 𝐴  ∩  𝑣 )  =  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 21 | 20 | eqeq1d | ⊢ ( 𝑣  =  𝐵  →  ( ( 𝐴  ∩  𝑣 )  =  ∅  ↔  ( 𝐴  ∩  𝐵 )  =  ∅ ) ) | 
						
							| 22 | 21 | rspccv | ⊢ ( ∀ 𝑣  ∈  ( 𝑇  ∖  { 𝐴 } ) ( 𝐴  ∩  𝑣 )  =  ∅  →  ( 𝐵  ∈  ( 𝑇  ∖  { 𝐴 } )  →  ( 𝐴  ∩  𝐵 )  =  ∅ ) ) | 
						
							| 23 | 15 19 22 | syl2im | ⊢ ( ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ( ( 𝐵  ∈  𝑇  ∧  𝐴  ≠  𝐵 )  →  ( 𝐴  ∩  𝐵 )  =  ∅ ) ) | 
						
							| 24 | 23 | expd | ⊢ ( ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ( 𝐵  ∈  𝑇  →  ( 𝐴  ≠  𝐵  →  ( 𝐴  ∩  𝐵 )  =  ∅ ) ) ) | 
						
							| 25 | 24 | 3impia | ⊢ ( ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇  ∧  𝐵  ∈  𝑇 )  →  ( 𝐴  ≠  𝐵  →  ( 𝐴  ∩  𝐵 )  =  ∅ ) ) | 
						
							| 26 | 2 25 | biimtrrid | ⊢ ( ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇  ∧  𝐵  ∈  𝑇 )  →  ( ¬  𝐴  =  𝐵  →  ( 𝐴  ∩  𝐵 )  =  ∅ ) ) | 
						
							| 27 | 26 | orrd | ⊢ ( ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇  ∧  𝐵  ∈  𝑇 )  →  ( 𝐴  =  𝐵  ∨  ( 𝐴  ∩  𝐵 )  =  ∅ ) ) |