Metamath Proof Explorer


Theorem cvmsdisj

Description: An even covering of U is a disjoint union. (Contributed by Mario Carneiro, 13-Feb-2015)

Ref Expression
Hypothesis cvmcov.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
Assertion cvmsdisj ( ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝑇𝐵𝑇 ) → ( 𝐴 = 𝐵 ∨ ( 𝐴𝐵 ) = ∅ ) )

Proof

Step Hyp Ref Expression
1 cvmcov.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
2 df-ne ( 𝐴𝐵 ↔ ¬ 𝐴 = 𝐵 )
3 1 cvmsi ( 𝑇 ∈ ( 𝑆𝑈 ) → ( 𝑈𝐽 ∧ ( 𝑇𝐶𝑇 ≠ ∅ ) ∧ ( 𝑇 = ( 𝐹𝑈 ) ∧ ∀ 𝑢𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) ) ) )
4 3 simp3d ( 𝑇 ∈ ( 𝑆𝑈 ) → ( 𝑇 = ( 𝐹𝑈 ) ∧ ∀ 𝑢𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) ) )
5 4 simprd ( 𝑇 ∈ ( 𝑆𝑈 ) → ∀ 𝑢𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) )
6 simpl ( ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) → ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ )
7 6 ralimi ( ∀ 𝑢𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) → ∀ 𝑢𝑇𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ )
8 5 7 syl ( 𝑇 ∈ ( 𝑆𝑈 ) → ∀ 𝑢𝑇𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ )
9 sneq ( 𝑢 = 𝐴 → { 𝑢 } = { 𝐴 } )
10 9 difeq2d ( 𝑢 = 𝐴 → ( 𝑇 ∖ { 𝑢 } ) = ( 𝑇 ∖ { 𝐴 } ) )
11 ineq1 ( 𝑢 = 𝐴 → ( 𝑢𝑣 ) = ( 𝐴𝑣 ) )
12 11 eqeq1d ( 𝑢 = 𝐴 → ( ( 𝑢𝑣 ) = ∅ ↔ ( 𝐴𝑣 ) = ∅ ) )
13 10 12 raleqbidv ( 𝑢 = 𝐴 → ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ↔ ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝐴 } ) ( 𝐴𝑣 ) = ∅ ) )
14 13 rspccva ( ( ∀ 𝑢𝑇𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ 𝐴𝑇 ) → ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝐴 } ) ( 𝐴𝑣 ) = ∅ )
15 8 14 sylan ( ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝑇 ) → ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝐴 } ) ( 𝐴𝑣 ) = ∅ )
16 necom ( 𝐴𝐵𝐵𝐴 )
17 eldifsn ( 𝐵 ∈ ( 𝑇 ∖ { 𝐴 } ) ↔ ( 𝐵𝑇𝐵𝐴 ) )
18 17 biimpri ( ( 𝐵𝑇𝐵𝐴 ) → 𝐵 ∈ ( 𝑇 ∖ { 𝐴 } ) )
19 16 18 sylan2b ( ( 𝐵𝑇𝐴𝐵 ) → 𝐵 ∈ ( 𝑇 ∖ { 𝐴 } ) )
20 ineq2 ( 𝑣 = 𝐵 → ( 𝐴𝑣 ) = ( 𝐴𝐵 ) )
21 20 eqeq1d ( 𝑣 = 𝐵 → ( ( 𝐴𝑣 ) = ∅ ↔ ( 𝐴𝐵 ) = ∅ ) )
22 21 rspccv ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝐴 } ) ( 𝐴𝑣 ) = ∅ → ( 𝐵 ∈ ( 𝑇 ∖ { 𝐴 } ) → ( 𝐴𝐵 ) = ∅ ) )
23 15 19 22 syl2im ( ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝑇 ) → ( ( 𝐵𝑇𝐴𝐵 ) → ( 𝐴𝐵 ) = ∅ ) )
24 23 expd ( ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝑇 ) → ( 𝐵𝑇 → ( 𝐴𝐵 → ( 𝐴𝐵 ) = ∅ ) ) )
25 24 3impia ( ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝑇𝐵𝑇 ) → ( 𝐴𝐵 → ( 𝐴𝐵 ) = ∅ ) )
26 2 25 syl5bir ( ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝑇𝐵𝑇 ) → ( ¬ 𝐴 = 𝐵 → ( 𝐴𝐵 ) = ∅ ) )
27 26 orrd ( ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝑇𝐵𝑇 ) → ( 𝐴 = 𝐵 ∨ ( 𝐴𝐵 ) = ∅ ) )