Step |
Hyp |
Ref |
Expression |
1 |
|
cvmcov.1 |
⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
2 |
|
df-ne |
⊢ ( 𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵 ) |
3 |
1
|
cvmsi |
⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) → ( 𝑈 ∈ 𝐽 ∧ ( 𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅ ) ∧ ( ∪ 𝑇 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) ) |
4 |
3
|
simp3d |
⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) → ( ∪ 𝑇 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) |
5 |
4
|
simprd |
⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) → ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) |
6 |
|
simpl |
⊢ ( ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) → ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ) |
7 |
6
|
ralimi |
⊢ ( ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) → ∀ 𝑢 ∈ 𝑇 ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ) |
8 |
5 7
|
syl |
⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) → ∀ 𝑢 ∈ 𝑇 ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ) |
9 |
|
sneq |
⊢ ( 𝑢 = 𝐴 → { 𝑢 } = { 𝐴 } ) |
10 |
9
|
difeq2d |
⊢ ( 𝑢 = 𝐴 → ( 𝑇 ∖ { 𝑢 } ) = ( 𝑇 ∖ { 𝐴 } ) ) |
11 |
|
ineq1 |
⊢ ( 𝑢 = 𝐴 → ( 𝑢 ∩ 𝑣 ) = ( 𝐴 ∩ 𝑣 ) ) |
12 |
11
|
eqeq1d |
⊢ ( 𝑢 = 𝐴 → ( ( 𝑢 ∩ 𝑣 ) = ∅ ↔ ( 𝐴 ∩ 𝑣 ) = ∅ ) ) |
13 |
10 12
|
raleqbidv |
⊢ ( 𝑢 = 𝐴 → ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ↔ ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝐴 } ) ( 𝐴 ∩ 𝑣 ) = ∅ ) ) |
14 |
13
|
rspccva |
⊢ ( ( ∀ 𝑢 ∈ 𝑇 ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ 𝐴 ∈ 𝑇 ) → ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝐴 } ) ( 𝐴 ∩ 𝑣 ) = ∅ ) |
15 |
8 14
|
sylan |
⊢ ( ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝑇 ) → ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝐴 } ) ( 𝐴 ∩ 𝑣 ) = ∅ ) |
16 |
|
necom |
⊢ ( 𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴 ) |
17 |
|
eldifsn |
⊢ ( 𝐵 ∈ ( 𝑇 ∖ { 𝐴 } ) ↔ ( 𝐵 ∈ 𝑇 ∧ 𝐵 ≠ 𝐴 ) ) |
18 |
17
|
biimpri |
⊢ ( ( 𝐵 ∈ 𝑇 ∧ 𝐵 ≠ 𝐴 ) → 𝐵 ∈ ( 𝑇 ∖ { 𝐴 } ) ) |
19 |
16 18
|
sylan2b |
⊢ ( ( 𝐵 ∈ 𝑇 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ ( 𝑇 ∖ { 𝐴 } ) ) |
20 |
|
ineq2 |
⊢ ( 𝑣 = 𝐵 → ( 𝐴 ∩ 𝑣 ) = ( 𝐴 ∩ 𝐵 ) ) |
21 |
20
|
eqeq1d |
⊢ ( 𝑣 = 𝐵 → ( ( 𝐴 ∩ 𝑣 ) = ∅ ↔ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) |
22 |
21
|
rspccv |
⊢ ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝐴 } ) ( 𝐴 ∩ 𝑣 ) = ∅ → ( 𝐵 ∈ ( 𝑇 ∖ { 𝐴 } ) → ( 𝐴 ∩ 𝐵 ) = ∅ ) ) |
23 |
15 19 22
|
syl2im |
⊢ ( ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝑇 ) → ( ( 𝐵 ∈ 𝑇 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) = ∅ ) ) |
24 |
23
|
expd |
⊢ ( ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝑇 ) → ( 𝐵 ∈ 𝑇 → ( 𝐴 ≠ 𝐵 → ( 𝐴 ∩ 𝐵 ) = ∅ ) ) ) |
25 |
24
|
3impia |
⊢ ( ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → ( 𝐴 ≠ 𝐵 → ( 𝐴 ∩ 𝐵 ) = ∅ ) ) |
26 |
2 25
|
biimtrrid |
⊢ ( ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → ( ¬ 𝐴 = 𝐵 → ( 𝐴 ∩ 𝐵 ) = ∅ ) ) |
27 |
26
|
orrd |
⊢ ( ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → ( 𝐴 = 𝐵 ∨ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) |