Step |
Hyp |
Ref |
Expression |
1 |
|
cvmcov.1 |
⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
2 |
1
|
cvmsi |
⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) → ( 𝑈 ∈ 𝐽 ∧ ( 𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅ ) ∧ ( ∪ 𝑇 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) ) |
3 |
2
|
simp3d |
⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) → ( ∪ 𝑇 = ( ◡ 𝐹 “ 𝑈 ) ∧ ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) ) |
4 |
3
|
simprd |
⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) → ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) |
5 |
|
simpr |
⊢ ( ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) → ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) |
6 |
5
|
ralimi |
⊢ ( ∀ 𝑢 ∈ 𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) → ∀ 𝑢 ∈ 𝑇 ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) |
7 |
4 6
|
syl |
⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) → ∀ 𝑢 ∈ 𝑇 ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) |
8 |
|
reseq2 |
⊢ ( 𝑢 = 𝐴 → ( 𝐹 ↾ 𝑢 ) = ( 𝐹 ↾ 𝐴 ) ) |
9 |
|
oveq2 |
⊢ ( 𝑢 = 𝐴 → ( 𝐶 ↾t 𝑢 ) = ( 𝐶 ↾t 𝐴 ) ) |
10 |
9
|
oveq1d |
⊢ ( 𝑢 = 𝐴 → ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) = ( ( 𝐶 ↾t 𝐴 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) |
11 |
8 10
|
eleq12d |
⊢ ( 𝑢 = 𝐴 → ( ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ↔ ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐶 ↾t 𝐴 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) ) |
12 |
11
|
rspccva |
⊢ ( ( ∀ 𝑢 ∈ 𝑇 ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ∧ 𝐴 ∈ 𝑇 ) → ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐶 ↾t 𝐴 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) |
13 |
7 12
|
sylan |
⊢ ( ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝑇 ) → ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐶 ↾t 𝐴 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) |