Metamath Proof Explorer


Theorem cvmshmeo

Description: Every element of an even covering of U is homeomorphic to U via F . (Contributed by Mario Carneiro, 13-Feb-2015)

Ref Expression
Hypothesis cvmcov.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
Assertion cvmshmeo ( ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝑇 ) → ( 𝐹𝐴 ) ∈ ( ( 𝐶t 𝐴 ) Homeo ( 𝐽t 𝑈 ) ) )

Proof

Step Hyp Ref Expression
1 cvmcov.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
2 1 cvmsi ( 𝑇 ∈ ( 𝑆𝑈 ) → ( 𝑈𝐽 ∧ ( 𝑇𝐶𝑇 ≠ ∅ ) ∧ ( 𝑇 = ( 𝐹𝑈 ) ∧ ∀ 𝑢𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) ) ) )
3 2 simp3d ( 𝑇 ∈ ( 𝑆𝑈 ) → ( 𝑇 = ( 𝐹𝑈 ) ∧ ∀ 𝑢𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) ) )
4 3 simprd ( 𝑇 ∈ ( 𝑆𝑈 ) → ∀ 𝑢𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) )
5 simpr ( ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) → ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) )
6 5 ralimi ( ∀ 𝑢𝑇 ( ∀ 𝑣 ∈ ( 𝑇 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ) → ∀ 𝑢𝑇 ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) )
7 4 6 syl ( 𝑇 ∈ ( 𝑆𝑈 ) → ∀ 𝑢𝑇 ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) )
8 reseq2 ( 𝑢 = 𝐴 → ( 𝐹𝑢 ) = ( 𝐹𝐴 ) )
9 oveq2 ( 𝑢 = 𝐴 → ( 𝐶t 𝑢 ) = ( 𝐶t 𝐴 ) )
10 9 oveq1d ( 𝑢 = 𝐴 → ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) = ( ( 𝐶t 𝐴 ) Homeo ( 𝐽t 𝑈 ) ) )
11 8 10 eleq12d ( 𝑢 = 𝐴 → ( ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ↔ ( 𝐹𝐴 ) ∈ ( ( 𝐶t 𝐴 ) Homeo ( 𝐽t 𝑈 ) ) ) )
12 11 rspccva ( ( ∀ 𝑢𝑇 ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑈 ) ) ∧ 𝐴𝑇 ) → ( 𝐹𝐴 ) ∈ ( ( 𝐶t 𝐴 ) Homeo ( 𝐽t 𝑈 ) ) )
13 7 12 sylan ( ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝑇 ) → ( 𝐹𝐴 ) ∈ ( ( 𝐶t 𝐴 ) Homeo ( 𝐽t 𝑈 ) ) )