Step |
Hyp |
Ref |
Expression |
1 |
|
cvmcov.1 |
⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
2 |
|
cvmtop1 |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐶 ∈ Top ) |
3 |
2
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝑇 ) → 𝐶 ∈ Top ) |
4 |
|
eqid |
⊢ ∪ 𝐶 = ∪ 𝐶 |
5 |
4
|
toptopon |
⊢ ( 𝐶 ∈ Top ↔ 𝐶 ∈ ( TopOn ‘ ∪ 𝐶 ) ) |
6 |
3 5
|
sylib |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝑇 ) → 𝐶 ∈ ( TopOn ‘ ∪ 𝐶 ) ) |
7 |
1
|
cvmsss |
⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) → 𝑇 ⊆ 𝐶 ) |
8 |
7
|
3ad2ant2 |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝑇 ) → 𝑇 ⊆ 𝐶 ) |
9 |
|
simp3 |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝑇 ) → 𝐴 ∈ 𝑇 ) |
10 |
8 9
|
sseldd |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝑇 ) → 𝐴 ∈ 𝐶 ) |
11 |
|
elssuni |
⊢ ( 𝐴 ∈ 𝐶 → 𝐴 ⊆ ∪ 𝐶 ) |
12 |
10 11
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝑇 ) → 𝐴 ⊆ ∪ 𝐶 ) |
13 |
|
resttopon |
⊢ ( ( 𝐶 ∈ ( TopOn ‘ ∪ 𝐶 ) ∧ 𝐴 ⊆ ∪ 𝐶 ) → ( 𝐶 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) |
14 |
6 12 13
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝑇 ) → ( 𝐶 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) |
15 |
|
cvmtop2 |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐽 ∈ Top ) |
16 |
15
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝑇 ) → 𝐽 ∈ Top ) |
17 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
18 |
17
|
toptopon |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
19 |
16 18
|
sylib |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝑇 ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
20 |
1
|
cvmsrcl |
⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) → 𝑈 ∈ 𝐽 ) |
21 |
20
|
3ad2ant2 |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝑇 ) → 𝑈 ∈ 𝐽 ) |
22 |
|
elssuni |
⊢ ( 𝑈 ∈ 𝐽 → 𝑈 ⊆ ∪ 𝐽 ) |
23 |
21 22
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝑇 ) → 𝑈 ⊆ ∪ 𝐽 ) |
24 |
|
resttopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝑈 ⊆ ∪ 𝐽 ) → ( 𝐽 ↾t 𝑈 ) ∈ ( TopOn ‘ 𝑈 ) ) |
25 |
19 23 24
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝑇 ) → ( 𝐽 ↾t 𝑈 ) ∈ ( TopOn ‘ 𝑈 ) ) |
26 |
1
|
cvmshmeo |
⊢ ( ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝑇 ) → ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐶 ↾t 𝐴 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) |
27 |
26
|
3adant1 |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝑇 ) → ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐶 ↾t 𝐴 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) |
28 |
|
hmeof1o2 |
⊢ ( ( ( 𝐶 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ∧ ( 𝐽 ↾t 𝑈 ) ∈ ( TopOn ‘ 𝑈 ) ∧ ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐶 ↾t 𝐴 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝑈 ) |
29 |
14 25 27 28
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝑇 ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝑈 ) |