Metamath Proof Explorer


Theorem cvmsf1o

Description: F , localized to an element of an even covering of U , is a bijection. (Contributed by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypothesis cvmcov.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
Assertion cvmsf1o ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝑇 ) → ( 𝐹𝐴 ) : 𝐴1-1-onto𝑈 )

Proof

Step Hyp Ref Expression
1 cvmcov.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
2 cvmtop1 ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐶 ∈ Top )
3 2 3ad2ant1 ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝑇 ) → 𝐶 ∈ Top )
4 eqid 𝐶 = 𝐶
5 4 toptopon ( 𝐶 ∈ Top ↔ 𝐶 ∈ ( TopOn ‘ 𝐶 ) )
6 3 5 sylib ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝑇 ) → 𝐶 ∈ ( TopOn ‘ 𝐶 ) )
7 1 cvmsss ( 𝑇 ∈ ( 𝑆𝑈 ) → 𝑇𝐶 )
8 7 3ad2ant2 ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝑇 ) → 𝑇𝐶 )
9 simp3 ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝑇 ) → 𝐴𝑇 )
10 8 9 sseldd ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝑇 ) → 𝐴𝐶 )
11 elssuni ( 𝐴𝐶𝐴 𝐶 )
12 10 11 syl ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝑇 ) → 𝐴 𝐶 )
13 resttopon ( ( 𝐶 ∈ ( TopOn ‘ 𝐶 ) ∧ 𝐴 𝐶 ) → ( 𝐶t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) )
14 6 12 13 syl2anc ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝑇 ) → ( 𝐶t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) )
15 cvmtop2 ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐽 ∈ Top )
16 15 3ad2ant1 ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝑇 ) → 𝐽 ∈ Top )
17 eqid 𝐽 = 𝐽
18 17 toptopon ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝐽 ) )
19 16 18 sylib ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝑇 ) → 𝐽 ∈ ( TopOn ‘ 𝐽 ) )
20 1 cvmsrcl ( 𝑇 ∈ ( 𝑆𝑈 ) → 𝑈𝐽 )
21 20 3ad2ant2 ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝑇 ) → 𝑈𝐽 )
22 elssuni ( 𝑈𝐽𝑈 𝐽 )
23 21 22 syl ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝑇 ) → 𝑈 𝐽 )
24 resttopon ( ( 𝐽 ∈ ( TopOn ‘ 𝐽 ) ∧ 𝑈 𝐽 ) → ( 𝐽t 𝑈 ) ∈ ( TopOn ‘ 𝑈 ) )
25 19 23 24 syl2anc ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝑇 ) → ( 𝐽t 𝑈 ) ∈ ( TopOn ‘ 𝑈 ) )
26 1 cvmshmeo ( ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝑇 ) → ( 𝐹𝐴 ) ∈ ( ( 𝐶t 𝐴 ) Homeo ( 𝐽t 𝑈 ) ) )
27 26 3adant1 ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝑇 ) → ( 𝐹𝐴 ) ∈ ( ( 𝐶t 𝐴 ) Homeo ( 𝐽t 𝑈 ) ) )
28 hmeof1o2 ( ( ( 𝐶t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ∧ ( 𝐽t 𝑈 ) ∈ ( TopOn ‘ 𝑈 ) ∧ ( 𝐹𝐴 ) ∈ ( ( 𝐶t 𝐴 ) Homeo ( 𝐽t 𝑈 ) ) ) → ( 𝐹𝐴 ) : 𝐴1-1-onto𝑈 )
29 14 25 27 28 syl3anc ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝑇 ) → ( 𝐹𝐴 ) : 𝐴1-1-onto𝑈 )