| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmcov.1 | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 2 |  | cvmtop1 | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐶  ∈  Top ) | 
						
							| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  𝐶  ∈  Top ) | 
						
							| 4 |  | eqid | ⊢ ∪  𝐶  =  ∪  𝐶 | 
						
							| 5 | 4 | toptopon | ⊢ ( 𝐶  ∈  Top  ↔  𝐶  ∈  ( TopOn ‘ ∪  𝐶 ) ) | 
						
							| 6 | 3 5 | sylib | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  𝐶  ∈  ( TopOn ‘ ∪  𝐶 ) ) | 
						
							| 7 | 1 | cvmsss | ⊢ ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  →  𝑇  ⊆  𝐶 ) | 
						
							| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  𝑇  ⊆  𝐶 ) | 
						
							| 9 |  | simp3 | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  𝐴  ∈  𝑇 ) | 
						
							| 10 | 8 9 | sseldd | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  𝐴  ∈  𝐶 ) | 
						
							| 11 |  | elssuni | ⊢ ( 𝐴  ∈  𝐶  →  𝐴  ⊆  ∪  𝐶 ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  𝐴  ⊆  ∪  𝐶 ) | 
						
							| 13 |  | resttopon | ⊢ ( ( 𝐶  ∈  ( TopOn ‘ ∪  𝐶 )  ∧  𝐴  ⊆  ∪  𝐶 )  →  ( 𝐶  ↾t  𝐴 )  ∈  ( TopOn ‘ 𝐴 ) ) | 
						
							| 14 | 6 12 13 | syl2anc | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ( 𝐶  ↾t  𝐴 )  ∈  ( TopOn ‘ 𝐴 ) ) | 
						
							| 15 |  | cvmtop2 | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐽  ∈  Top ) | 
						
							| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  𝐽  ∈  Top ) | 
						
							| 17 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 18 | 17 | toptopon | ⊢ ( 𝐽  ∈  Top  ↔  𝐽  ∈  ( TopOn ‘ ∪  𝐽 ) ) | 
						
							| 19 | 16 18 | sylib | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  𝐽  ∈  ( TopOn ‘ ∪  𝐽 ) ) | 
						
							| 20 | 1 | cvmsrcl | ⊢ ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  →  𝑈  ∈  𝐽 ) | 
						
							| 21 | 20 | 3ad2ant2 | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  𝑈  ∈  𝐽 ) | 
						
							| 22 |  | elssuni | ⊢ ( 𝑈  ∈  𝐽  →  𝑈  ⊆  ∪  𝐽 ) | 
						
							| 23 | 21 22 | syl | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  𝑈  ⊆  ∪  𝐽 ) | 
						
							| 24 |  | resttopon | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ ∪  𝐽 )  ∧  𝑈  ⊆  ∪  𝐽 )  →  ( 𝐽  ↾t  𝑈 )  ∈  ( TopOn ‘ 𝑈 ) ) | 
						
							| 25 | 19 23 24 | syl2anc | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ( 𝐽  ↾t  𝑈 )  ∈  ( TopOn ‘ 𝑈 ) ) | 
						
							| 26 | 1 | cvmshmeo | ⊢ ( ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ( 𝐹  ↾  𝐴 )  ∈  ( ( 𝐶  ↾t  𝐴 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) | 
						
							| 27 | 26 | 3adant1 | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ( 𝐹  ↾  𝐴 )  ∈  ( ( 𝐶  ↾t  𝐴 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) | 
						
							| 28 |  | hmeof1o2 | ⊢ ( ( ( 𝐶  ↾t  𝐴 )  ∈  ( TopOn ‘ 𝐴 )  ∧  ( 𝐽  ↾t  𝑈 )  ∈  ( TopOn ‘ 𝑈 )  ∧  ( 𝐹  ↾  𝐴 )  ∈  ( ( 𝐶  ↾t  𝐴 ) Homeo ( 𝐽  ↾t  𝑈 ) ) )  →  ( 𝐹  ↾  𝐴 ) : 𝐴 –1-1-onto→ 𝑈 ) | 
						
							| 29 | 14 25 27 28 | syl3anc | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝑇 )  →  ( 𝐹  ↾  𝐴 ) : 𝐴 –1-1-onto→ 𝑈 ) |