Metamath Proof Explorer


Theorem cvmtop2

Description: Reverse closure for a covering map. (Contributed by Mario Carneiro, 13-Feb-2015)

Ref Expression
Assertion cvmtop2 ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐽 ∈ Top )

Proof

Step Hyp Ref Expression
1 n0i ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → ¬ ( 𝐶 CovMap 𝐽 ) = ∅ )
2 fncvm CovMap Fn ( Top × Top )
3 2 fndmi dom CovMap = ( Top × Top )
4 3 ndmov ( ¬ ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) → ( 𝐶 CovMap 𝐽 ) = ∅ )
5 1 4 nsyl2 ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ) )
6 5 simprd ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐽 ∈ Top )