Metamath Proof Explorer


Theorem cvmsf1o

Description: F , localized to an element of an even covering of U , is a bijection. (Contributed by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypothesis cvmcov.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
Assertion cvmsf1o F C CovMap J T S U A T F A : A 1-1 onto U

Proof

Step Hyp Ref Expression
1 cvmcov.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
2 cvmtop1 F C CovMap J C Top
3 2 3ad2ant1 F C CovMap J T S U A T C Top
4 eqid C = C
5 4 toptopon C Top C TopOn C
6 3 5 sylib F C CovMap J T S U A T C TopOn C
7 1 cvmsss T S U T C
8 7 3ad2ant2 F C CovMap J T S U A T T C
9 simp3 F C CovMap J T S U A T A T
10 8 9 sseldd F C CovMap J T S U A T A C
11 elssuni A C A C
12 10 11 syl F C CovMap J T S U A T A C
13 resttopon C TopOn C A C C 𝑡 A TopOn A
14 6 12 13 syl2anc F C CovMap J T S U A T C 𝑡 A TopOn A
15 cvmtop2 F C CovMap J J Top
16 15 3ad2ant1 F C CovMap J T S U A T J Top
17 eqid J = J
18 17 toptopon J Top J TopOn J
19 16 18 sylib F C CovMap J T S U A T J TopOn J
20 1 cvmsrcl T S U U J
21 20 3ad2ant2 F C CovMap J T S U A T U J
22 elssuni U J U J
23 21 22 syl F C CovMap J T S U A T U J
24 resttopon J TopOn J U J J 𝑡 U TopOn U
25 19 23 24 syl2anc F C CovMap J T S U A T J 𝑡 U TopOn U
26 1 cvmshmeo T S U A T F A C 𝑡 A Homeo J 𝑡 U
27 26 3adant1 F C CovMap J T S U A T F A C 𝑡 A Homeo J 𝑡 U
28 hmeof1o2 C 𝑡 A TopOn A J 𝑡 U TopOn U F A C 𝑡 A Homeo J 𝑡 U F A : A 1-1 onto U
29 14 25 27 28 syl3anc F C CovMap J T S U A T F A : A 1-1 onto U