Metamath Proof Explorer


Theorem cvmshmeo

Description: Every element of an even covering of U is homeomorphic to U via F . (Contributed by Mario Carneiro, 13-Feb-2015)

Ref Expression
Hypothesis cvmcov.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
Assertion cvmshmeo T S U A T F A C 𝑡 A Homeo J 𝑡 U

Proof

Step Hyp Ref Expression
1 cvmcov.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
2 1 cvmsi T S U U J T C T T = F -1 U u T v T u u v = F u C 𝑡 u Homeo J 𝑡 U
3 2 simp3d T S U T = F -1 U u T v T u u v = F u C 𝑡 u Homeo J 𝑡 U
4 3 simprd T S U u T v T u u v = F u C 𝑡 u Homeo J 𝑡 U
5 simpr v T u u v = F u C 𝑡 u Homeo J 𝑡 U F u C 𝑡 u Homeo J 𝑡 U
6 5 ralimi u T v T u u v = F u C 𝑡 u Homeo J 𝑡 U u T F u C 𝑡 u Homeo J 𝑡 U
7 4 6 syl T S U u T F u C 𝑡 u Homeo J 𝑡 U
8 reseq2 u = A F u = F A
9 oveq2 u = A C 𝑡 u = C 𝑡 A
10 9 oveq1d u = A C 𝑡 u Homeo J 𝑡 U = C 𝑡 A Homeo J 𝑡 U
11 8 10 eleq12d u = A F u C 𝑡 u Homeo J 𝑡 U F A C 𝑡 A Homeo J 𝑡 U
12 11 rspccva u T F u C 𝑡 u Homeo J 𝑡 U A T F A C 𝑡 A Homeo J 𝑡 U
13 7 12 sylan T S U A T F A C 𝑡 A Homeo J 𝑡 U