Step |
Hyp |
Ref |
Expression |
1 |
|
cvmcov.1 |
|
2 |
|
cvmtop1 |
|
3 |
2
|
3ad2ant1 |
|
4 |
1
|
cvmsuni |
|
5 |
4
|
3ad2ant2 |
|
6 |
1
|
cvmsss |
|
7 |
6
|
3ad2ant2 |
|
8 |
7
|
unissd |
|
9 |
5 8
|
eqsstrrd |
|
10 |
|
eqid |
|
11 |
10
|
restuni |
|
12 |
3 9 11
|
syl2anc |
|
13 |
12
|
difeq1d |
|
14 |
|
unisng |
|
15 |
14
|
3ad2ant3 |
|
16 |
15
|
uneq2d |
|
17 |
|
uniun |
|
18 |
|
undif1 |
|
19 |
|
simp3 |
|
20 |
19
|
snssd |
|
21 |
|
ssequn2 |
|
22 |
20 21
|
sylib |
|
23 |
18 22
|
eqtrid |
|
24 |
23
|
unieqd |
|
25 |
24 5
|
eqtrd |
|
26 |
17 25
|
eqtr3id |
|
27 |
16 26
|
eqtr3d |
|
28 |
|
difss |
|
29 |
28
|
unissi |
|
30 |
29 5
|
sseqtrid |
|
31 |
|
uniiun |
|
32 |
31
|
ineq2i |
|
33 |
|
incom |
|
34 |
|
iunin2 |
|
35 |
32 33 34
|
3eqtr4i |
|
36 |
|
eldifsn |
|
37 |
|
nesym |
|
38 |
1
|
cvmsdisj |
|
39 |
38
|
3expa |
|
40 |
39
|
ord |
|
41 |
37 40
|
syl5bi |
|
42 |
41
|
impr |
|
43 |
36 42
|
sylan2b |
|
44 |
43
|
iuneq2dv |
|
45 |
44
|
3adant1 |
|
46 |
|
iun0 |
|
47 |
45 46
|
eqtrdi |
|
48 |
35 47
|
eqtrid |
|
49 |
|
uneqdifeq |
|
50 |
30 48 49
|
syl2anc |
|
51 |
27 50
|
mpbid |
|
52 |
13 51
|
eqtr3d |
|
53 |
|
uniexg |
|
54 |
53
|
3ad2ant2 |
|
55 |
5 54
|
eqeltrrd |
|
56 |
|
resttop |
|
57 |
3 55 56
|
syl2anc |
|
58 |
|
elssuni |
|
59 |
58
|
adantl |
|
60 |
5
|
adantr |
|
61 |
59 60
|
sseqtrd |
|
62 |
|
df-ss |
|
63 |
61 62
|
sylib |
|
64 |
3
|
adantr |
|
65 |
55
|
adantr |
|
66 |
7
|
sselda |
|
67 |
|
elrestr |
|
68 |
64 65 66 67
|
syl3anc |
|
69 |
63 68
|
eqeltrrd |
|
70 |
69
|
ex |
|
71 |
70
|
ssrdv |
|
72 |
71
|
ssdifssd |
|
73 |
|
uniopn |
|
74 |
57 72 73
|
syl2anc |
|
75 |
|
eqid |
|
76 |
75
|
opncld |
|
77 |
57 74 76
|
syl2anc |
|
78 |
52 77
|
eqeltrrd |
|