Metamath Proof Explorer


Theorem cvmscld

Description: The sets of an even covering are clopen in the subspace topology on T . (Contributed by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypothesis cvmcov.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
Assertion cvmscld FCCovMapJTSUATAClsdC𝑡F-1U

Proof

Step Hyp Ref Expression
1 cvmcov.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
2 cvmtop1 FCCovMapJCTop
3 2 3ad2ant1 FCCovMapJTSUATCTop
4 1 cvmsuni TSUT=F-1U
5 4 3ad2ant2 FCCovMapJTSUATT=F-1U
6 1 cvmsss TSUTC
7 6 3ad2ant2 FCCovMapJTSUATTC
8 7 unissd FCCovMapJTSUATTC
9 5 8 eqsstrrd FCCovMapJTSUATF-1UC
10 eqid C=C
11 10 restuni CTopF-1UCF-1U=C𝑡F-1U
12 3 9 11 syl2anc FCCovMapJTSUATF-1U=C𝑡F-1U
13 12 difeq1d FCCovMapJTSUATF-1UTA=C𝑡F-1UTA
14 unisng ATA=A
15 14 3ad2ant3 FCCovMapJTSUATA=A
16 15 uneq2d FCCovMapJTSUATTAA=TAA
17 uniun TAA=TAA
18 undif1 TAA=TA
19 simp3 FCCovMapJTSUATAT
20 19 snssd FCCovMapJTSUATAT
21 ssequn2 ATTA=T
22 20 21 sylib FCCovMapJTSUATTA=T
23 18 22 eqtrid FCCovMapJTSUATTAA=T
24 23 unieqd FCCovMapJTSUATTAA=T
25 24 5 eqtrd FCCovMapJTSUATTAA=F-1U
26 17 25 eqtr3id FCCovMapJTSUATTAA=F-1U
27 16 26 eqtr3d FCCovMapJTSUATTAA=F-1U
28 difss TAT
29 28 unissi TAT
30 29 5 sseqtrid FCCovMapJTSUATTAF-1U
31 uniiun TA=xTAx
32 31 ineq2i ATA=AxTAx
33 incom TAA=ATA
34 iunin2 xTAAx=AxTAx
35 32 33 34 3eqtr4i TAA=xTAAx
36 eldifsn xTAxTxA
37 nesym xA¬A=x
38 1 cvmsdisj TSUATxTA=xAx=
39 38 3expa TSUATxTA=xAx=
40 39 ord TSUATxT¬A=xAx=
41 37 40 biimtrid TSUATxTxAAx=
42 41 impr TSUATxTxAAx=
43 36 42 sylan2b TSUATxTAAx=
44 43 iuneq2dv TSUATxTAAx=xTA
45 44 3adant1 FCCovMapJTSUATxTAAx=xTA
46 iun0 xTA=
47 45 46 eqtrdi FCCovMapJTSUATxTAAx=
48 35 47 eqtrid FCCovMapJTSUATTAA=
49 uneqdifeq TAF-1UTAA=TAA=F-1UF-1UTA=A
50 30 48 49 syl2anc FCCovMapJTSUATTAA=F-1UF-1UTA=A
51 27 50 mpbid FCCovMapJTSUATF-1UTA=A
52 13 51 eqtr3d FCCovMapJTSUATC𝑡F-1UTA=A
53 uniexg TSUTV
54 53 3ad2ant2 FCCovMapJTSUATTV
55 5 54 eqeltrrd FCCovMapJTSUATF-1UV
56 resttop CTopF-1UVC𝑡F-1UTop
57 3 55 56 syl2anc FCCovMapJTSUATC𝑡F-1UTop
58 elssuni xTxT
59 58 adantl FCCovMapJTSUATxTxT
60 5 adantr FCCovMapJTSUATxTT=F-1U
61 59 60 sseqtrd FCCovMapJTSUATxTxF-1U
62 df-ss xF-1UxF-1U=x
63 61 62 sylib FCCovMapJTSUATxTxF-1U=x
64 3 adantr FCCovMapJTSUATxTCTop
65 55 adantr FCCovMapJTSUATxTF-1UV
66 7 sselda FCCovMapJTSUATxTxC
67 elrestr CTopF-1UVxCxF-1UC𝑡F-1U
68 64 65 66 67 syl3anc FCCovMapJTSUATxTxF-1UC𝑡F-1U
69 63 68 eqeltrrd FCCovMapJTSUATxTxC𝑡F-1U
70 69 ex FCCovMapJTSUATxTxC𝑡F-1U
71 70 ssrdv FCCovMapJTSUATTC𝑡F-1U
72 71 ssdifssd FCCovMapJTSUATTAC𝑡F-1U
73 uniopn C𝑡F-1UTopTAC𝑡F-1UTAC𝑡F-1U
74 57 72 73 syl2anc FCCovMapJTSUATTAC𝑡F-1U
75 eqid C𝑡F-1U=C𝑡F-1U
76 75 opncld C𝑡F-1UTopTAC𝑡F-1UC𝑡F-1UTAClsdC𝑡F-1U
77 57 74 76 syl2anc FCCovMapJTSUATC𝑡F-1UTAClsdC𝑡F-1U
78 52 77 eqeltrrd FCCovMapJTSUATAClsdC𝑡F-1U