Metamath Proof Explorer


Theorem cvmscld

Description: The sets of an even covering are clopen in the subspace topology on T . (Contributed by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypothesis cvmcov.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
Assertion cvmscld F C CovMap J T S U A T A Clsd C 𝑡 F -1 U

Proof

Step Hyp Ref Expression
1 cvmcov.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
2 cvmtop1 F C CovMap J C Top
3 2 3ad2ant1 F C CovMap J T S U A T C Top
4 1 cvmsuni T S U T = F -1 U
5 4 3ad2ant2 F C CovMap J T S U A T T = F -1 U
6 1 cvmsss T S U T C
7 6 3ad2ant2 F C CovMap J T S U A T T C
8 7 unissd F C CovMap J T S U A T T C
9 5 8 eqsstrrd F C CovMap J T S U A T F -1 U C
10 eqid C = C
11 10 restuni C Top F -1 U C F -1 U = C 𝑡 F -1 U
12 3 9 11 syl2anc F C CovMap J T S U A T F -1 U = C 𝑡 F -1 U
13 12 difeq1d F C CovMap J T S U A T F -1 U T A = C 𝑡 F -1 U T A
14 unisng A T A = A
15 14 3ad2ant3 F C CovMap J T S U A T A = A
16 15 uneq2d F C CovMap J T S U A T T A A = T A A
17 uniun T A A = T A A
18 undif1 T A A = T A
19 simp3 F C CovMap J T S U A T A T
20 19 snssd F C CovMap J T S U A T A T
21 ssequn2 A T T A = T
22 20 21 sylib F C CovMap J T S U A T T A = T
23 18 22 eqtrid F C CovMap J T S U A T T A A = T
24 23 unieqd F C CovMap J T S U A T T A A = T
25 24 5 eqtrd F C CovMap J T S U A T T A A = F -1 U
26 17 25 eqtr3id F C CovMap J T S U A T T A A = F -1 U
27 16 26 eqtr3d F C CovMap J T S U A T T A A = F -1 U
28 difss T A T
29 28 unissi T A T
30 29 5 sseqtrid F C CovMap J T S U A T T A F -1 U
31 uniiun T A = x T A x
32 31 ineq2i A T A = A x T A x
33 incom T A A = A T A
34 iunin2 x T A A x = A x T A x
35 32 33 34 3eqtr4i T A A = x T A A x
36 eldifsn x T A x T x A
37 nesym x A ¬ A = x
38 1 cvmsdisj T S U A T x T A = x A x =
39 38 3expa T S U A T x T A = x A x =
40 39 ord T S U A T x T ¬ A = x A x =
41 37 40 syl5bi T S U A T x T x A A x =
42 41 impr T S U A T x T x A A x =
43 36 42 sylan2b T S U A T x T A A x =
44 43 iuneq2dv T S U A T x T A A x = x T A
45 44 3adant1 F C CovMap J T S U A T x T A A x = x T A
46 iun0 x T A =
47 45 46 eqtrdi F C CovMap J T S U A T x T A A x =
48 35 47 eqtrid F C CovMap J T S U A T T A A =
49 uneqdifeq T A F -1 U T A A = T A A = F -1 U F -1 U T A = A
50 30 48 49 syl2anc F C CovMap J T S U A T T A A = F -1 U F -1 U T A = A
51 27 50 mpbid F C CovMap J T S U A T F -1 U T A = A
52 13 51 eqtr3d F C CovMap J T S U A T C 𝑡 F -1 U T A = A
53 uniexg T S U T V
54 53 3ad2ant2 F C CovMap J T S U A T T V
55 5 54 eqeltrrd F C CovMap J T S U A T F -1 U V
56 resttop C Top F -1 U V C 𝑡 F -1 U Top
57 3 55 56 syl2anc F C CovMap J T S U A T C 𝑡 F -1 U Top
58 elssuni x T x T
59 58 adantl F C CovMap J T S U A T x T x T
60 5 adantr F C CovMap J T S U A T x T T = F -1 U
61 59 60 sseqtrd F C CovMap J T S U A T x T x F -1 U
62 df-ss x F -1 U x F -1 U = x
63 61 62 sylib F C CovMap J T S U A T x T x F -1 U = x
64 3 adantr F C CovMap J T S U A T x T C Top
65 55 adantr F C CovMap J T S U A T x T F -1 U V
66 7 sselda F C CovMap J T S U A T x T x C
67 elrestr C Top F -1 U V x C x F -1 U C 𝑡 F -1 U
68 64 65 66 67 syl3anc F C CovMap J T S U A T x T x F -1 U C 𝑡 F -1 U
69 63 68 eqeltrrd F C CovMap J T S U A T x T x C 𝑡 F -1 U
70 69 ex F C CovMap J T S U A T x T x C 𝑡 F -1 U
71 70 ssrdv F C CovMap J T S U A T T C 𝑡 F -1 U
72 71 ssdifssd F C CovMap J T S U A T T A C 𝑡 F -1 U
73 uniopn C 𝑡 F -1 U Top T A C 𝑡 F -1 U T A C 𝑡 F -1 U
74 57 72 73 syl2anc F C CovMap J T S U A T T A C 𝑡 F -1 U
75 eqid C 𝑡 F -1 U = C 𝑡 F -1 U
76 75 opncld C 𝑡 F -1 U Top T A C 𝑡 F -1 U C 𝑡 F -1 U T A Clsd C 𝑡 F -1 U
77 57 74 76 syl2anc F C CovMap J T S U A T C 𝑡 F -1 U T A Clsd C 𝑡 F -1 U
78 52 77 eqeltrrd F C CovMap J T S U A T A Clsd C 𝑡 F -1 U