| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmcov.1 |
|
| 2 |
|
n0 |
|
| 3 |
|
simpl2 |
|
| 4 |
|
simpl1 |
|
| 5 |
|
cvmtop1 |
|
| 6 |
4 5
|
syl |
|
| 7 |
6
|
adantr |
|
| 8 |
1
|
cvmsss |
|
| 9 |
8
|
adantl |
|
| 10 |
9
|
sselda |
|
| 11 |
|
cvmcn |
|
| 12 |
4 11
|
syl |
|
| 13 |
|
cnima |
|
| 14 |
12 3 13
|
syl2anc |
|
| 15 |
14
|
adantr |
|
| 16 |
|
inopn |
|
| 17 |
7 10 15 16
|
syl3anc |
|
| 18 |
17
|
fmpttd |
|
| 19 |
18
|
frnd |
|
| 20 |
1
|
cvmsn0 |
|
| 21 |
20
|
adantl |
|
| 22 |
|
dmmptg |
|
| 23 |
|
inex1g |
|
| 24 |
22 23
|
mprg |
|
| 25 |
24
|
eqeq1i |
|
| 26 |
|
dm0rn0 |
|
| 27 |
25 26
|
bitr3i |
|
| 28 |
27
|
necon3bii |
|
| 29 |
21 28
|
sylib |
|
| 30 |
19 29
|
jca |
|
| 31 |
|
inss2 |
|
| 32 |
|
elpw2g |
|
| 33 |
15 32
|
syl |
|
| 34 |
31 33
|
mpbiri |
|
| 35 |
34
|
fmpttd |
|
| 36 |
35
|
frnd |
|
| 37 |
|
sspwuni |
|
| 38 |
36 37
|
sylib |
|
| 39 |
|
simpl3 |
|
| 40 |
|
imass2 |
|
| 41 |
39 40
|
syl |
|
| 42 |
1
|
cvmsuni |
|
| 43 |
42
|
adantl |
|
| 44 |
41 43
|
sseqtrrd |
|
| 45 |
44
|
sselda |
|
| 46 |
|
eqid |
|
| 47 |
|
ineq1 |
|
| 48 |
47
|
rspceeqv |
|
| 49 |
46 48
|
mpan2 |
|
| 50 |
49
|
ad2antrl |
|
| 51 |
|
vex |
|
| 52 |
51
|
inex1 |
|
| 53 |
|
eqid |
|
| 54 |
53
|
elrnmpt |
|
| 55 |
52 54
|
ax-mp |
|
| 56 |
50 55
|
sylibr |
|
| 57 |
|
simprr |
|
| 58 |
|
simplr |
|
| 59 |
57 58
|
elind |
|
| 60 |
|
eleq2 |
|
| 61 |
60
|
rspcev |
|
| 62 |
56 59 61
|
syl2anc |
|
| 63 |
62
|
rexlimdvaa |
|
| 64 |
|
eluni2 |
|
| 65 |
|
eluni2 |
|
| 66 |
63 64 65
|
3imtr4g |
|
| 67 |
45 66
|
mpd |
|
| 68 |
38 67
|
eqelssd |
|
| 69 |
|
eldifsn |
|
| 70 |
|
vex |
|
| 71 |
53
|
elrnmpt |
|
| 72 |
70 71
|
ax-mp |
|
| 73 |
47
|
equcoms |
|
| 74 |
73
|
necon3ai |
|
| 75 |
|
simpllr |
|
| 76 |
|
simplr |
|
| 77 |
|
simpr |
|
| 78 |
1
|
cvmsdisj |
|
| 79 |
75 76 77 78
|
syl3anc |
|
| 80 |
79
|
ord |
|
| 81 |
|
inss1 |
|
| 82 |
|
sseq0 |
|
| 83 |
81 82
|
mpan |
|
| 84 |
74 80 83
|
syl56 |
|
| 85 |
|
neeq1 |
|
| 86 |
|
ineq2 |
|
| 87 |
|
inindir |
|
| 88 |
86 87
|
eqtr4di |
|
| 89 |
88
|
eqeq1d |
|
| 90 |
85 89
|
imbi12d |
|
| 91 |
84 90
|
syl5ibrcom |
|
| 92 |
91
|
rexlimdva |
|
| 93 |
72 92
|
biimtrid |
|
| 94 |
93
|
impd |
|
| 95 |
69 94
|
biimtrid |
|
| 96 |
95
|
ralrimiv |
|
| 97 |
|
inss1 |
|
| 98 |
|
resabs1 |
|
| 99 |
97 98
|
ax-mp |
|
| 100 |
1
|
cvmshmeo |
|
| 101 |
100
|
adantll |
|
| 102 |
6
|
adantr |
|
| 103 |
9
|
sselda |
|
| 104 |
|
elssuni |
|
| 105 |
103 104
|
syl |
|
| 106 |
|
eqid |
|
| 107 |
106
|
restuni |
|
| 108 |
102 105 107
|
syl2anc |
|
| 109 |
97 108
|
sseqtrid |
|
| 110 |
|
eqid |
|
| 111 |
110
|
hmeores |
|
| 112 |
101 109 111
|
syl2anc |
|
| 113 |
99 112
|
eqeltrrid |
|
| 114 |
97
|
a1i |
|
| 115 |
|
simpr |
|
| 116 |
|
restabs |
|
| 117 |
102 114 115 116
|
syl3anc |
|
| 118 |
|
incom |
|
| 119 |
|
cnvresima |
|
| 120 |
118 119
|
eqtr4i |
|
| 121 |
120
|
imaeq2i |
|
| 122 |
4
|
adantr |
|
| 123 |
|
simplr |
|
| 124 |
1
|
cvmsf1o |
|
| 125 |
122 123 115 124
|
syl3anc |
|
| 126 |
|
f1ofo |
|
| 127 |
125 126
|
syl |
|
| 128 |
39
|
adantr |
|
| 129 |
|
foimacnv |
|
| 130 |
127 128 129
|
syl2anc |
|
| 131 |
121 130
|
eqtrid |
|
| 132 |
131
|
oveq2d |
|
| 133 |
|
cvmtop2 |
|
| 134 |
4 133
|
syl |
|
| 135 |
1
|
cvmsrcl |
|
| 136 |
135
|
adantl |
|
| 137 |
|
restabs |
|
| 138 |
134 39 136 137
|
syl3anc |
|
| 139 |
138
|
adantr |
|
| 140 |
132 139
|
eqtrd |
|
| 141 |
117 140
|
oveq12d |
|
| 142 |
113 141
|
eleqtrd |
|
| 143 |
96 142
|
jca |
|
| 144 |
143
|
ralrimiva |
|
| 145 |
52
|
rgenw |
|
| 146 |
47
|
cbvmptv |
|
| 147 |
|
sneq |
|
| 148 |
147
|
difeq2d |
|
| 149 |
|
ineq1 |
|
| 150 |
149
|
eqeq1d |
|
| 151 |
148 150
|
raleqbidv |
|
| 152 |
|
reseq2 |
|
| 153 |
|
oveq2 |
|
| 154 |
153
|
oveq1d |
|
| 155 |
152 154
|
eleq12d |
|
| 156 |
151 155
|
anbi12d |
|
| 157 |
146 156
|
ralrnmptw |
|
| 158 |
145 157
|
ax-mp |
|
| 159 |
144 158
|
sylibr |
|
| 160 |
68 159
|
jca |
|
| 161 |
1
|
cvmscbv |
|
| 162 |
161
|
cvmsval |
|
| 163 |
6 162
|
syl |
|
| 164 |
3 30 160 163
|
mpbir3and |
|
| 165 |
164
|
ne0d |
|
| 166 |
165
|
ex |
|
| 167 |
166
|
exlimdv |
|
| 168 |
2 167
|
biimtrid |
|