Metamath Proof Explorer


Theorem cvmcn

Description: A covering map is a continuous function. (Contributed by Mario Carneiro, 13-Feb-2015)

Ref Expression
Assertion cvmcn F C CovMap J F C Cn J

Proof

Step Hyp Ref Expression
1 eqid k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
2 eqid J = J
3 1 2 iscvm F C CovMap J C Top J Top F C Cn J x J k J x k k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k k
4 3 simplbi F C CovMap J C Top J Top F C Cn J
5 4 simp3d F C CovMap J F C Cn J