| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmcov.1 |
⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
| 2 |
|
n0 |
⊢ ( ( 𝑆 ‘ 𝑈 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) |
| 3 |
|
simpl2 |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) → 𝑉 ∈ 𝐽 ) |
| 4 |
|
simpl1 |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
| 5 |
|
cvmtop1 |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐶 ∈ Top ) |
| 6 |
4 5
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) → 𝐶 ∈ Top ) |
| 7 |
6
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝐶 ∈ Top ) |
| 8 |
1
|
cvmsss |
⊢ ( 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) → 𝑥 ⊆ 𝐶 ) |
| 9 |
8
|
adantl |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) → 𝑥 ⊆ 𝐶 ) |
| 10 |
9
|
sselda |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝐶 ) |
| 11 |
|
cvmcn |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) |
| 12 |
4 11
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) → 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) |
| 13 |
|
cnima |
⊢ ( ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ∧ 𝑉 ∈ 𝐽 ) → ( ◡ 𝐹 “ 𝑉 ) ∈ 𝐶 ) |
| 14 |
12 3 13
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) → ( ◡ 𝐹 “ 𝑉 ) ∈ 𝐶 ) |
| 15 |
14
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ◡ 𝐹 “ 𝑉 ) ∈ 𝐶 ) |
| 16 |
|
inopn |
⊢ ( ( 𝐶 ∈ Top ∧ 𝑦 ∈ 𝐶 ∧ ( ◡ 𝐹 “ 𝑉 ) ∈ 𝐶 ) → ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∈ 𝐶 ) |
| 17 |
7 10 15 16
|
syl3anc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∈ 𝐶 ) |
| 18 |
17
|
fmpttd |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) → ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) : 𝑥 ⟶ 𝐶 ) |
| 19 |
18
|
frnd |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) → ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ⊆ 𝐶 ) |
| 20 |
1
|
cvmsn0 |
⊢ ( 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) → 𝑥 ≠ ∅ ) |
| 21 |
20
|
adantl |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) → 𝑥 ≠ ∅ ) |
| 22 |
|
dmmptg |
⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∈ V → dom ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) = 𝑥 ) |
| 23 |
|
inex1g |
⊢ ( 𝑦 ∈ 𝑥 → ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∈ V ) |
| 24 |
22 23
|
mprg |
⊢ dom ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) = 𝑥 |
| 25 |
24
|
eqeq1i |
⊢ ( dom ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) = ∅ ↔ 𝑥 = ∅ ) |
| 26 |
|
dm0rn0 |
⊢ ( dom ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) = ∅ ↔ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) = ∅ ) |
| 27 |
25 26
|
bitr3i |
⊢ ( 𝑥 = ∅ ↔ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) = ∅ ) |
| 28 |
27
|
necon3bii |
⊢ ( 𝑥 ≠ ∅ ↔ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ≠ ∅ ) |
| 29 |
21 28
|
sylib |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) → ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ≠ ∅ ) |
| 30 |
19 29
|
jca |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) → ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ⊆ 𝐶 ∧ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ≠ ∅ ) ) |
| 31 |
|
inss2 |
⊢ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ⊆ ( ◡ 𝐹 “ 𝑉 ) |
| 32 |
|
elpw2g |
⊢ ( ( ◡ 𝐹 “ 𝑉 ) ∈ 𝐶 → ( ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∈ 𝒫 ( ◡ 𝐹 “ 𝑉 ) ↔ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ⊆ ( ◡ 𝐹 “ 𝑉 ) ) ) |
| 33 |
15 32
|
syl |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∈ 𝒫 ( ◡ 𝐹 “ 𝑉 ) ↔ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ⊆ ( ◡ 𝐹 “ 𝑉 ) ) ) |
| 34 |
31 33
|
mpbiri |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∈ 𝒫 ( ◡ 𝐹 “ 𝑉 ) ) |
| 35 |
34
|
fmpttd |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) → ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) : 𝑥 ⟶ 𝒫 ( ◡ 𝐹 “ 𝑉 ) ) |
| 36 |
35
|
frnd |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) → ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ⊆ 𝒫 ( ◡ 𝐹 “ 𝑉 ) ) |
| 37 |
|
sspwuni |
⊢ ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ⊆ 𝒫 ( ◡ 𝐹 “ 𝑉 ) ↔ ∪ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ⊆ ( ◡ 𝐹 “ 𝑉 ) ) |
| 38 |
36 37
|
sylib |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) → ∪ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ⊆ ( ◡ 𝐹 “ 𝑉 ) ) |
| 39 |
|
simpl3 |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) → 𝑉 ⊆ 𝑈 ) |
| 40 |
|
imass2 |
⊢ ( 𝑉 ⊆ 𝑈 → ( ◡ 𝐹 “ 𝑉 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) |
| 41 |
39 40
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) → ( ◡ 𝐹 “ 𝑉 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) |
| 42 |
1
|
cvmsuni |
⊢ ( 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) → ∪ 𝑥 = ( ◡ 𝐹 “ 𝑈 ) ) |
| 43 |
42
|
adantl |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) → ∪ 𝑥 = ( ◡ 𝐹 “ 𝑈 ) ) |
| 44 |
41 43
|
sseqtrrd |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) → ( ◡ 𝐹 “ 𝑉 ) ⊆ ∪ 𝑥 ) |
| 45 |
44
|
sselda |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑧 ∈ ( ◡ 𝐹 “ 𝑉 ) ) → 𝑧 ∈ ∪ 𝑥 ) |
| 46 |
|
eqid |
⊢ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) = ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) |
| 47 |
|
ineq1 |
⊢ ( 𝑦 = 𝑡 → ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) = ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) |
| 48 |
47
|
rspceeqv |
⊢ ( ( 𝑡 ∈ 𝑥 ∧ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) = ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) → ∃ 𝑦 ∈ 𝑥 ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) = ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) |
| 49 |
46 48
|
mpan2 |
⊢ ( 𝑡 ∈ 𝑥 → ∃ 𝑦 ∈ 𝑥 ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) = ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) |
| 50 |
49
|
ad2antrl |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑧 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ∧ ( 𝑡 ∈ 𝑥 ∧ 𝑧 ∈ 𝑡 ) ) → ∃ 𝑦 ∈ 𝑥 ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) = ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) |
| 51 |
|
vex |
⊢ 𝑡 ∈ V |
| 52 |
51
|
inex1 |
⊢ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∈ V |
| 53 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) = ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) |
| 54 |
53
|
elrnmpt |
⊢ ( ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∈ V → ( ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ↔ ∃ 𝑦 ∈ 𝑥 ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) = ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ) |
| 55 |
52 54
|
ax-mp |
⊢ ( ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ↔ ∃ 𝑦 ∈ 𝑥 ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) = ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) |
| 56 |
50 55
|
sylibr |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑧 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ∧ ( 𝑡 ∈ 𝑥 ∧ 𝑧 ∈ 𝑡 ) ) → ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ) |
| 57 |
|
simprr |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑧 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ∧ ( 𝑡 ∈ 𝑥 ∧ 𝑧 ∈ 𝑡 ) ) → 𝑧 ∈ 𝑡 ) |
| 58 |
|
simplr |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑧 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ∧ ( 𝑡 ∈ 𝑥 ∧ 𝑧 ∈ 𝑡 ) ) → 𝑧 ∈ ( ◡ 𝐹 “ 𝑉 ) ) |
| 59 |
57 58
|
elind |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑧 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ∧ ( 𝑡 ∈ 𝑥 ∧ 𝑧 ∈ 𝑡 ) ) → 𝑧 ∈ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) |
| 60 |
|
eleq2 |
⊢ ( 𝑤 = ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ) |
| 61 |
60
|
rspcev |
⊢ ( ( ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∧ 𝑧 ∈ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) → ∃ 𝑤 ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) 𝑧 ∈ 𝑤 ) |
| 62 |
56 59 61
|
syl2anc |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑧 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ∧ ( 𝑡 ∈ 𝑥 ∧ 𝑧 ∈ 𝑡 ) ) → ∃ 𝑤 ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) 𝑧 ∈ 𝑤 ) |
| 63 |
62
|
rexlimdvaa |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑧 ∈ ( ◡ 𝐹 “ 𝑉 ) ) → ( ∃ 𝑡 ∈ 𝑥 𝑧 ∈ 𝑡 → ∃ 𝑤 ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) 𝑧 ∈ 𝑤 ) ) |
| 64 |
|
eluni2 |
⊢ ( 𝑧 ∈ ∪ 𝑥 ↔ ∃ 𝑡 ∈ 𝑥 𝑧 ∈ 𝑡 ) |
| 65 |
|
eluni2 |
⊢ ( 𝑧 ∈ ∪ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ↔ ∃ 𝑤 ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) 𝑧 ∈ 𝑤 ) |
| 66 |
63 64 65
|
3imtr4g |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑧 ∈ ( ◡ 𝐹 “ 𝑉 ) ) → ( 𝑧 ∈ ∪ 𝑥 → 𝑧 ∈ ∪ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ) ) |
| 67 |
45 66
|
mpd |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑧 ∈ ( ◡ 𝐹 “ 𝑉 ) ) → 𝑧 ∈ ∪ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ) |
| 68 |
38 67
|
eqelssd |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) → ∪ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) = ( ◡ 𝐹 “ 𝑉 ) ) |
| 69 |
|
eldifsn |
⊢ ( 𝑧 ∈ ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∖ { ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) } ) ↔ ( 𝑧 ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∧ 𝑧 ≠ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ) |
| 70 |
|
vex |
⊢ 𝑧 ∈ V |
| 71 |
53
|
elrnmpt |
⊢ ( 𝑧 ∈ V → ( 𝑧 ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ↔ ∃ 𝑦 ∈ 𝑥 𝑧 = ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ) |
| 72 |
70 71
|
ax-mp |
⊢ ( 𝑧 ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ↔ ∃ 𝑦 ∈ 𝑥 𝑧 = ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) |
| 73 |
47
|
equcoms |
⊢ ( 𝑡 = 𝑦 → ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) = ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) |
| 74 |
73
|
necon3ai |
⊢ ( ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ≠ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) → ¬ 𝑡 = 𝑦 ) |
| 75 |
|
simpllr |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) → 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) |
| 76 |
|
simplr |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) → 𝑡 ∈ 𝑥 ) |
| 77 |
|
simpr |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑥 ) |
| 78 |
1
|
cvmsdisj |
⊢ ( ( 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝑡 ∈ 𝑥 ∧ 𝑦 ∈ 𝑥 ) → ( 𝑡 = 𝑦 ∨ ( 𝑡 ∩ 𝑦 ) = ∅ ) ) |
| 79 |
75 76 77 78
|
syl3anc |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑡 = 𝑦 ∨ ( 𝑡 ∩ 𝑦 ) = ∅ ) ) |
| 80 |
79
|
ord |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) → ( ¬ 𝑡 = 𝑦 → ( 𝑡 ∩ 𝑦 ) = ∅ ) ) |
| 81 |
|
inss1 |
⊢ ( ( 𝑡 ∩ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑉 ) ) ⊆ ( 𝑡 ∩ 𝑦 ) |
| 82 |
|
sseq0 |
⊢ ( ( ( ( 𝑡 ∩ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑉 ) ) ⊆ ( 𝑡 ∩ 𝑦 ) ∧ ( 𝑡 ∩ 𝑦 ) = ∅ ) → ( ( 𝑡 ∩ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑉 ) ) = ∅ ) |
| 83 |
81 82
|
mpan |
⊢ ( ( 𝑡 ∩ 𝑦 ) = ∅ → ( ( 𝑡 ∩ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑉 ) ) = ∅ ) |
| 84 |
74 80 83
|
syl56 |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ≠ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) → ( ( 𝑡 ∩ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑉 ) ) = ∅ ) ) |
| 85 |
|
neeq1 |
⊢ ( 𝑧 = ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) → ( 𝑧 ≠ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ↔ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ≠ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ) |
| 86 |
|
ineq2 |
⊢ ( 𝑧 = ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) → ( ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∩ 𝑧 ) = ( ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∩ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ) |
| 87 |
|
inindir |
⊢ ( ( 𝑡 ∩ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑉 ) ) = ( ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∩ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) |
| 88 |
86 87
|
eqtr4di |
⊢ ( 𝑧 = ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) → ( ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∩ 𝑧 ) = ( ( 𝑡 ∩ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) |
| 89 |
88
|
eqeq1d |
⊢ ( 𝑧 = ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) → ( ( ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∩ 𝑧 ) = ∅ ↔ ( ( 𝑡 ∩ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑉 ) ) = ∅ ) ) |
| 90 |
85 89
|
imbi12d |
⊢ ( 𝑧 = ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) → ( ( 𝑧 ≠ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) → ( ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∩ 𝑧 ) = ∅ ) ↔ ( ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ≠ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) → ( ( 𝑡 ∩ 𝑦 ) ∩ ( ◡ 𝐹 “ 𝑉 ) ) = ∅ ) ) ) |
| 91 |
84 90
|
syl5ibrcom |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑧 = ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) → ( 𝑧 ≠ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) → ( ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∩ 𝑧 ) = ∅ ) ) ) |
| 92 |
91
|
rexlimdva |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → ( ∃ 𝑦 ∈ 𝑥 𝑧 = ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) → ( 𝑧 ≠ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) → ( ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∩ 𝑧 ) = ∅ ) ) ) |
| 93 |
72 92
|
biimtrid |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → ( 𝑧 ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( 𝑧 ≠ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) → ( ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∩ 𝑧 ) = ∅ ) ) ) |
| 94 |
93
|
impd |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → ( ( 𝑧 ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∧ 𝑧 ≠ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∩ 𝑧 ) = ∅ ) ) |
| 95 |
69 94
|
biimtrid |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → ( 𝑧 ∈ ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∖ { ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) } ) → ( ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∩ 𝑧 ) = ∅ ) ) |
| 96 |
95
|
ralrimiv |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → ∀ 𝑧 ∈ ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∖ { ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) } ) ( ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∩ 𝑧 ) = ∅ ) |
| 97 |
|
inss1 |
⊢ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ⊆ 𝑡 |
| 98 |
|
resabs1 |
⊢ ( ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ⊆ 𝑡 → ( ( 𝐹 ↾ 𝑡 ) ↾ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) = ( 𝐹 ↾ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ) |
| 99 |
97 98
|
ax-mp |
⊢ ( ( 𝐹 ↾ 𝑡 ) ↾ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) = ( 𝐹 ↾ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) |
| 100 |
1
|
cvmshmeo |
⊢ ( ( 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝑡 ∈ 𝑥 ) → ( 𝐹 ↾ 𝑡 ) ∈ ( ( 𝐶 ↾t 𝑡 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) |
| 101 |
100
|
adantll |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → ( 𝐹 ↾ 𝑡 ) ∈ ( ( 𝐶 ↾t 𝑡 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ) |
| 102 |
6
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → 𝐶 ∈ Top ) |
| 103 |
9
|
sselda |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → 𝑡 ∈ 𝐶 ) |
| 104 |
|
elssuni |
⊢ ( 𝑡 ∈ 𝐶 → 𝑡 ⊆ ∪ 𝐶 ) |
| 105 |
103 104
|
syl |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → 𝑡 ⊆ ∪ 𝐶 ) |
| 106 |
|
eqid |
⊢ ∪ 𝐶 = ∪ 𝐶 |
| 107 |
106
|
restuni |
⊢ ( ( 𝐶 ∈ Top ∧ 𝑡 ⊆ ∪ 𝐶 ) → 𝑡 = ∪ ( 𝐶 ↾t 𝑡 ) ) |
| 108 |
102 105 107
|
syl2anc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → 𝑡 = ∪ ( 𝐶 ↾t 𝑡 ) ) |
| 109 |
97 108
|
sseqtrid |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ⊆ ∪ ( 𝐶 ↾t 𝑡 ) ) |
| 110 |
|
eqid |
⊢ ∪ ( 𝐶 ↾t 𝑡 ) = ∪ ( 𝐶 ↾t 𝑡 ) |
| 111 |
110
|
hmeores |
⊢ ( ( ( 𝐹 ↾ 𝑡 ) ∈ ( ( 𝐶 ↾t 𝑡 ) Homeo ( 𝐽 ↾t 𝑈 ) ) ∧ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ⊆ ∪ ( 𝐶 ↾t 𝑡 ) ) → ( ( 𝐹 ↾ 𝑡 ) ↾ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∈ ( ( ( 𝐶 ↾t 𝑡 ) ↾t ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) Homeo ( ( 𝐽 ↾t 𝑈 ) ↾t ( ( 𝐹 ↾ 𝑡 ) “ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ) ) ) |
| 112 |
101 109 111
|
syl2anc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → ( ( 𝐹 ↾ 𝑡 ) ↾ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∈ ( ( ( 𝐶 ↾t 𝑡 ) ↾t ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) Homeo ( ( 𝐽 ↾t 𝑈 ) ↾t ( ( 𝐹 ↾ 𝑡 ) “ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ) ) ) |
| 113 |
99 112
|
eqeltrrid |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → ( 𝐹 ↾ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∈ ( ( ( 𝐶 ↾t 𝑡 ) ↾t ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) Homeo ( ( 𝐽 ↾t 𝑈 ) ↾t ( ( 𝐹 ↾ 𝑡 ) “ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ) ) ) |
| 114 |
97
|
a1i |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ⊆ 𝑡 ) |
| 115 |
|
simpr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → 𝑡 ∈ 𝑥 ) |
| 116 |
|
restabs |
⊢ ( ( 𝐶 ∈ Top ∧ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ⊆ 𝑡 ∧ 𝑡 ∈ 𝑥 ) → ( ( 𝐶 ↾t 𝑡 ) ↾t ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) = ( 𝐶 ↾t ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ) |
| 117 |
102 114 115 116
|
syl3anc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → ( ( 𝐶 ↾t 𝑡 ) ↾t ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) = ( 𝐶 ↾t ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ) |
| 118 |
|
incom |
⊢ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) = ( ( ◡ 𝐹 “ 𝑉 ) ∩ 𝑡 ) |
| 119 |
|
cnvresima |
⊢ ( ◡ ( 𝐹 ↾ 𝑡 ) “ 𝑉 ) = ( ( ◡ 𝐹 “ 𝑉 ) ∩ 𝑡 ) |
| 120 |
118 119
|
eqtr4i |
⊢ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) = ( ◡ ( 𝐹 ↾ 𝑡 ) “ 𝑉 ) |
| 121 |
120
|
imaeq2i |
⊢ ( ( 𝐹 ↾ 𝑡 ) “ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) = ( ( 𝐹 ↾ 𝑡 ) “ ( ◡ ( 𝐹 ↾ 𝑡 ) “ 𝑉 ) ) |
| 122 |
4
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
| 123 |
|
simplr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) |
| 124 |
1
|
cvmsf1o |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝑡 ∈ 𝑥 ) → ( 𝐹 ↾ 𝑡 ) : 𝑡 –1-1-onto→ 𝑈 ) |
| 125 |
122 123 115 124
|
syl3anc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → ( 𝐹 ↾ 𝑡 ) : 𝑡 –1-1-onto→ 𝑈 ) |
| 126 |
|
f1ofo |
⊢ ( ( 𝐹 ↾ 𝑡 ) : 𝑡 –1-1-onto→ 𝑈 → ( 𝐹 ↾ 𝑡 ) : 𝑡 –onto→ 𝑈 ) |
| 127 |
125 126
|
syl |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → ( 𝐹 ↾ 𝑡 ) : 𝑡 –onto→ 𝑈 ) |
| 128 |
39
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → 𝑉 ⊆ 𝑈 ) |
| 129 |
|
foimacnv |
⊢ ( ( ( 𝐹 ↾ 𝑡 ) : 𝑡 –onto→ 𝑈 ∧ 𝑉 ⊆ 𝑈 ) → ( ( 𝐹 ↾ 𝑡 ) “ ( ◡ ( 𝐹 ↾ 𝑡 ) “ 𝑉 ) ) = 𝑉 ) |
| 130 |
127 128 129
|
syl2anc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → ( ( 𝐹 ↾ 𝑡 ) “ ( ◡ ( 𝐹 ↾ 𝑡 ) “ 𝑉 ) ) = 𝑉 ) |
| 131 |
121 130
|
eqtrid |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → ( ( 𝐹 ↾ 𝑡 ) “ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) = 𝑉 ) |
| 132 |
131
|
oveq2d |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → ( ( 𝐽 ↾t 𝑈 ) ↾t ( ( 𝐹 ↾ 𝑡 ) “ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ) = ( ( 𝐽 ↾t 𝑈 ) ↾t 𝑉 ) ) |
| 133 |
|
cvmtop2 |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐽 ∈ Top ) |
| 134 |
4 133
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) → 𝐽 ∈ Top ) |
| 135 |
1
|
cvmsrcl |
⊢ ( 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) → 𝑈 ∈ 𝐽 ) |
| 136 |
135
|
adantl |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) → 𝑈 ∈ 𝐽 ) |
| 137 |
|
restabs |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑉 ⊆ 𝑈 ∧ 𝑈 ∈ 𝐽 ) → ( ( 𝐽 ↾t 𝑈 ) ↾t 𝑉 ) = ( 𝐽 ↾t 𝑉 ) ) |
| 138 |
134 39 136 137
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) → ( ( 𝐽 ↾t 𝑈 ) ↾t 𝑉 ) = ( 𝐽 ↾t 𝑉 ) ) |
| 139 |
138
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → ( ( 𝐽 ↾t 𝑈 ) ↾t 𝑉 ) = ( 𝐽 ↾t 𝑉 ) ) |
| 140 |
132 139
|
eqtrd |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → ( ( 𝐽 ↾t 𝑈 ) ↾t ( ( 𝐹 ↾ 𝑡 ) “ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ) = ( 𝐽 ↾t 𝑉 ) ) |
| 141 |
117 140
|
oveq12d |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → ( ( ( 𝐶 ↾t 𝑡 ) ↾t ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) Homeo ( ( 𝐽 ↾t 𝑈 ) ↾t ( ( 𝐹 ↾ 𝑡 ) “ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ) ) = ( ( 𝐶 ↾t ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) Homeo ( 𝐽 ↾t 𝑉 ) ) ) |
| 142 |
113 141
|
eleqtrd |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → ( 𝐹 ↾ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∈ ( ( 𝐶 ↾t ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) Homeo ( 𝐽 ↾t 𝑉 ) ) ) |
| 143 |
96 142
|
jca |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) ∧ 𝑡 ∈ 𝑥 ) → ( ∀ 𝑧 ∈ ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∖ { ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) } ) ( ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∩ 𝑧 ) = ∅ ∧ ( 𝐹 ↾ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∈ ( ( 𝐶 ↾t ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) Homeo ( 𝐽 ↾t 𝑉 ) ) ) ) |
| 144 |
143
|
ralrimiva |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) → ∀ 𝑡 ∈ 𝑥 ( ∀ 𝑧 ∈ ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∖ { ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) } ) ( ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∩ 𝑧 ) = ∅ ∧ ( 𝐹 ↾ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∈ ( ( 𝐶 ↾t ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) Homeo ( 𝐽 ↾t 𝑉 ) ) ) ) |
| 145 |
52
|
rgenw |
⊢ ∀ 𝑡 ∈ 𝑥 ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∈ V |
| 146 |
47
|
cbvmptv |
⊢ ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) = ( 𝑡 ∈ 𝑥 ↦ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) |
| 147 |
|
sneq |
⊢ ( 𝑤 = ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) → { 𝑤 } = { ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) } ) |
| 148 |
147
|
difeq2d |
⊢ ( 𝑤 = ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) → ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∖ { 𝑤 } ) = ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∖ { ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) } ) ) |
| 149 |
|
ineq1 |
⊢ ( 𝑤 = ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) → ( 𝑤 ∩ 𝑧 ) = ( ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∩ 𝑧 ) ) |
| 150 |
149
|
eqeq1d |
⊢ ( 𝑤 = ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) → ( ( 𝑤 ∩ 𝑧 ) = ∅ ↔ ( ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∩ 𝑧 ) = ∅ ) ) |
| 151 |
148 150
|
raleqbidv |
⊢ ( 𝑤 = ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) → ( ∀ 𝑧 ∈ ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∖ { 𝑤 } ) ( 𝑤 ∩ 𝑧 ) = ∅ ↔ ∀ 𝑧 ∈ ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∖ { ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) } ) ( ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∩ 𝑧 ) = ∅ ) ) |
| 152 |
|
reseq2 |
⊢ ( 𝑤 = ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) → ( 𝐹 ↾ 𝑤 ) = ( 𝐹 ↾ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ) |
| 153 |
|
oveq2 |
⊢ ( 𝑤 = ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) → ( 𝐶 ↾t 𝑤 ) = ( 𝐶 ↾t ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ) |
| 154 |
153
|
oveq1d |
⊢ ( 𝑤 = ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) → ( ( 𝐶 ↾t 𝑤 ) Homeo ( 𝐽 ↾t 𝑉 ) ) = ( ( 𝐶 ↾t ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) Homeo ( 𝐽 ↾t 𝑉 ) ) ) |
| 155 |
152 154
|
eleq12d |
⊢ ( 𝑤 = ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) → ( ( 𝐹 ↾ 𝑤 ) ∈ ( ( 𝐶 ↾t 𝑤 ) Homeo ( 𝐽 ↾t 𝑉 ) ) ↔ ( 𝐹 ↾ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∈ ( ( 𝐶 ↾t ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) Homeo ( 𝐽 ↾t 𝑉 ) ) ) ) |
| 156 |
151 155
|
anbi12d |
⊢ ( 𝑤 = ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) → ( ( ∀ 𝑧 ∈ ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∖ { 𝑤 } ) ( 𝑤 ∩ 𝑧 ) = ∅ ∧ ( 𝐹 ↾ 𝑤 ) ∈ ( ( 𝐶 ↾t 𝑤 ) Homeo ( 𝐽 ↾t 𝑉 ) ) ) ↔ ( ∀ 𝑧 ∈ ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∖ { ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) } ) ( ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∩ 𝑧 ) = ∅ ∧ ( 𝐹 ↾ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∈ ( ( 𝐶 ↾t ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) Homeo ( 𝐽 ↾t 𝑉 ) ) ) ) ) |
| 157 |
146 156
|
ralrnmptw |
⊢ ( ∀ 𝑡 ∈ 𝑥 ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∈ V → ( ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ( ∀ 𝑧 ∈ ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∖ { 𝑤 } ) ( 𝑤 ∩ 𝑧 ) = ∅ ∧ ( 𝐹 ↾ 𝑤 ) ∈ ( ( 𝐶 ↾t 𝑤 ) Homeo ( 𝐽 ↾t 𝑉 ) ) ) ↔ ∀ 𝑡 ∈ 𝑥 ( ∀ 𝑧 ∈ ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∖ { ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) } ) ( ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∩ 𝑧 ) = ∅ ∧ ( 𝐹 ↾ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∈ ( ( 𝐶 ↾t ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) Homeo ( 𝐽 ↾t 𝑉 ) ) ) ) ) |
| 158 |
145 157
|
ax-mp |
⊢ ( ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ( ∀ 𝑧 ∈ ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∖ { 𝑤 } ) ( 𝑤 ∩ 𝑧 ) = ∅ ∧ ( 𝐹 ↾ 𝑤 ) ∈ ( ( 𝐶 ↾t 𝑤 ) Homeo ( 𝐽 ↾t 𝑉 ) ) ) ↔ ∀ 𝑡 ∈ 𝑥 ( ∀ 𝑧 ∈ ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∖ { ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) } ) ( ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ∩ 𝑧 ) = ∅ ∧ ( 𝐹 ↾ ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∈ ( ( 𝐶 ↾t ( 𝑡 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) Homeo ( 𝐽 ↾t 𝑉 ) ) ) ) |
| 159 |
144 158
|
sylibr |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) → ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ( ∀ 𝑧 ∈ ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∖ { 𝑤 } ) ( 𝑤 ∩ 𝑧 ) = ∅ ∧ ( 𝐹 ↾ 𝑤 ) ∈ ( ( 𝐶 ↾t 𝑤 ) Homeo ( 𝐽 ↾t 𝑉 ) ) ) ) |
| 160 |
68 159
|
jca |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) → ( ∪ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) = ( ◡ 𝐹 “ 𝑉 ) ∧ ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ( ∀ 𝑧 ∈ ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∖ { 𝑤 } ) ( 𝑤 ∩ 𝑧 ) = ∅ ∧ ( 𝐹 ↾ 𝑤 ) ∈ ( ( 𝐶 ↾t 𝑤 ) Homeo ( 𝐽 ↾t 𝑉 ) ) ) ) ) |
| 161 |
1
|
cvmscbv |
⊢ 𝑆 = ( 𝑎 ∈ 𝐽 ↦ { 𝑏 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑏 = ( ◡ 𝐹 “ 𝑎 ) ∧ ∀ 𝑤 ∈ 𝑏 ( ∀ 𝑧 ∈ ( 𝑏 ∖ { 𝑤 } ) ( 𝑤 ∩ 𝑧 ) = ∅ ∧ ( 𝐹 ↾ 𝑤 ) ∈ ( ( 𝐶 ↾t 𝑤 ) Homeo ( 𝐽 ↾t 𝑎 ) ) ) ) } ) |
| 162 |
161
|
cvmsval |
⊢ ( 𝐶 ∈ Top → ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∈ ( 𝑆 ‘ 𝑉 ) ↔ ( 𝑉 ∈ 𝐽 ∧ ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ⊆ 𝐶 ∧ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ≠ ∅ ) ∧ ( ∪ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) = ( ◡ 𝐹 “ 𝑉 ) ∧ ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ( ∀ 𝑧 ∈ ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∖ { 𝑤 } ) ( 𝑤 ∩ 𝑧 ) = ∅ ∧ ( 𝐹 ↾ 𝑤 ) ∈ ( ( 𝐶 ↾t 𝑤 ) Homeo ( 𝐽 ↾t 𝑉 ) ) ) ) ) ) ) |
| 163 |
6 162
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) → ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∈ ( 𝑆 ‘ 𝑉 ) ↔ ( 𝑉 ∈ 𝐽 ∧ ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ⊆ 𝐶 ∧ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ≠ ∅ ) ∧ ( ∪ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) = ( ◡ 𝐹 “ 𝑉 ) ∧ ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ( ∀ 𝑧 ∈ ( ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∖ { 𝑤 } ) ( 𝑤 ∩ 𝑧 ) = ∅ ∧ ( 𝐹 ↾ 𝑤 ) ∈ ( ( 𝐶 ↾t 𝑤 ) Homeo ( 𝐽 ↾t 𝑉 ) ) ) ) ) ) ) |
| 164 |
3 30 160 163
|
mpbir3and |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) → ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ ( ◡ 𝐹 “ 𝑉 ) ) ) ∈ ( 𝑆 ‘ 𝑉 ) ) |
| 165 |
164
|
ne0d |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) ) → ( 𝑆 ‘ 𝑉 ) ≠ ∅ ) |
| 166 |
165
|
ex |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) → ( 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) → ( 𝑆 ‘ 𝑉 ) ≠ ∅ ) ) |
| 167 |
166
|
exlimdv |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) → ( ∃ 𝑥 𝑥 ∈ ( 𝑆 ‘ 𝑈 ) → ( 𝑆 ‘ 𝑉 ) ≠ ∅ ) ) |
| 168 |
2 167
|
biimtrid |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈 ) → ( ( 𝑆 ‘ 𝑈 ) ≠ ∅ → ( 𝑆 ‘ 𝑉 ) ≠ ∅ ) ) |