| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmcov.1 | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 2 |  | n0 | ⊢ ( ( 𝑆 ‘ 𝑈 )  ≠  ∅  ↔  ∃ 𝑥 𝑥  ∈  ( 𝑆 ‘ 𝑈 ) ) | 
						
							| 3 |  | simpl2 | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  →  𝑉  ∈  𝐽 ) | 
						
							| 4 |  | simpl1 | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 5 |  | cvmtop1 | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐶  ∈  Top ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  →  𝐶  ∈  Top ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑦  ∈  𝑥 )  →  𝐶  ∈  Top ) | 
						
							| 8 | 1 | cvmsss | ⊢ ( 𝑥  ∈  ( 𝑆 ‘ 𝑈 )  →  𝑥  ⊆  𝐶 ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  →  𝑥  ⊆  𝐶 ) | 
						
							| 10 | 9 | sselda | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  𝐶 ) | 
						
							| 11 |  | cvmcn | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐹  ∈  ( 𝐶  Cn  𝐽 ) ) | 
						
							| 12 | 4 11 | syl | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  →  𝐹  ∈  ( 𝐶  Cn  𝐽 ) ) | 
						
							| 13 |  | cnima | ⊢ ( ( 𝐹  ∈  ( 𝐶  Cn  𝐽 )  ∧  𝑉  ∈  𝐽 )  →  ( ◡ 𝐹  “  𝑉 )  ∈  𝐶 ) | 
						
							| 14 | 12 3 13 | syl2anc | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  →  ( ◡ 𝐹  “  𝑉 )  ∈  𝐶 ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑦  ∈  𝑥 )  →  ( ◡ 𝐹  “  𝑉 )  ∈  𝐶 ) | 
						
							| 16 |  | inopn | ⊢ ( ( 𝐶  ∈  Top  ∧  𝑦  ∈  𝐶  ∧  ( ◡ 𝐹  “  𝑉 )  ∈  𝐶 )  →  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∈  𝐶 ) | 
						
							| 17 | 7 10 15 16 | syl3anc | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑦  ∈  𝑥 )  →  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∈  𝐶 ) | 
						
							| 18 | 17 | fmpttd | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  →  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) : 𝑥 ⟶ 𝐶 ) | 
						
							| 19 | 18 | frnd | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  →  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ⊆  𝐶 ) | 
						
							| 20 | 1 | cvmsn0 | ⊢ ( 𝑥  ∈  ( 𝑆 ‘ 𝑈 )  →  𝑥  ≠  ∅ ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  →  𝑥  ≠  ∅ ) | 
						
							| 22 |  | dmmptg | ⊢ ( ∀ 𝑦  ∈  𝑥 ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∈  V  →  dom  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  =  𝑥 ) | 
						
							| 23 |  | inex1g | ⊢ ( 𝑦  ∈  𝑥  →  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∈  V ) | 
						
							| 24 | 22 23 | mprg | ⊢ dom  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  =  𝑥 | 
						
							| 25 | 24 | eqeq1i | ⊢ ( dom  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  =  ∅  ↔  𝑥  =  ∅ ) | 
						
							| 26 |  | dm0rn0 | ⊢ ( dom  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  =  ∅  ↔  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  =  ∅ ) | 
						
							| 27 | 25 26 | bitr3i | ⊢ ( 𝑥  =  ∅  ↔  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  =  ∅ ) | 
						
							| 28 | 27 | necon3bii | ⊢ ( 𝑥  ≠  ∅  ↔  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ≠  ∅ ) | 
						
							| 29 | 21 28 | sylib | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  →  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ≠  ∅ ) | 
						
							| 30 | 19 29 | jca | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  →  ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ⊆  𝐶  ∧  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ≠  ∅ ) ) | 
						
							| 31 |  | inss2 | ⊢ ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) )  ⊆  ( ◡ 𝐹  “  𝑉 ) | 
						
							| 32 |  | elpw2g | ⊢ ( ( ◡ 𝐹  “  𝑉 )  ∈  𝐶  →  ( ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∈  𝒫  ( ◡ 𝐹  “  𝑉 )  ↔  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) )  ⊆  ( ◡ 𝐹  “  𝑉 ) ) ) | 
						
							| 33 | 15 32 | syl | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑦  ∈  𝑥 )  →  ( ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∈  𝒫  ( ◡ 𝐹  “  𝑉 )  ↔  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) )  ⊆  ( ◡ 𝐹  “  𝑉 ) ) ) | 
						
							| 34 | 31 33 | mpbiri | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑦  ∈  𝑥 )  →  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∈  𝒫  ( ◡ 𝐹  “  𝑉 ) ) | 
						
							| 35 | 34 | fmpttd | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  →  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) : 𝑥 ⟶ 𝒫  ( ◡ 𝐹  “  𝑉 ) ) | 
						
							| 36 | 35 | frnd | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  →  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ⊆  𝒫  ( ◡ 𝐹  “  𝑉 ) ) | 
						
							| 37 |  | sspwuni | ⊢ ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ⊆  𝒫  ( ◡ 𝐹  “  𝑉 )  ↔  ∪  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ⊆  ( ◡ 𝐹  “  𝑉 ) ) | 
						
							| 38 | 36 37 | sylib | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  →  ∪  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ⊆  ( ◡ 𝐹  “  𝑉 ) ) | 
						
							| 39 |  | simpl3 | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  →  𝑉  ⊆  𝑈 ) | 
						
							| 40 |  | imass2 | ⊢ ( 𝑉  ⊆  𝑈  →  ( ◡ 𝐹  “  𝑉 )  ⊆  ( ◡ 𝐹  “  𝑈 ) ) | 
						
							| 41 | 39 40 | syl | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  →  ( ◡ 𝐹  “  𝑉 )  ⊆  ( ◡ 𝐹  “  𝑈 ) ) | 
						
							| 42 | 1 | cvmsuni | ⊢ ( 𝑥  ∈  ( 𝑆 ‘ 𝑈 )  →  ∪  𝑥  =  ( ◡ 𝐹  “  𝑈 ) ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  →  ∪  𝑥  =  ( ◡ 𝐹  “  𝑈 ) ) | 
						
							| 44 | 41 43 | sseqtrrd | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  →  ( ◡ 𝐹  “  𝑉 )  ⊆  ∪  𝑥 ) | 
						
							| 45 | 44 | sselda | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑧  ∈  ( ◡ 𝐹  “  𝑉 ) )  →  𝑧  ∈  ∪  𝑥 ) | 
						
							| 46 |  | eqid | ⊢ ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  =  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) | 
						
							| 47 |  | ineq1 | ⊢ ( 𝑦  =  𝑡  →  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) )  =  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) | 
						
							| 48 | 47 | rspceeqv | ⊢ ( ( 𝑡  ∈  𝑥  ∧  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  =  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  →  ∃ 𝑦  ∈  𝑥 ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  =  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) | 
						
							| 49 | 46 48 | mpan2 | ⊢ ( 𝑡  ∈  𝑥  →  ∃ 𝑦  ∈  𝑥 ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  =  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) | 
						
							| 50 | 49 | ad2antrl | ⊢ ( ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑧  ∈  ( ◡ 𝐹  “  𝑉 ) )  ∧  ( 𝑡  ∈  𝑥  ∧  𝑧  ∈  𝑡 ) )  →  ∃ 𝑦  ∈  𝑥 ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  =  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) | 
						
							| 51 |  | vex | ⊢ 𝑡  ∈  V | 
						
							| 52 | 51 | inex1 | ⊢ ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∈  V | 
						
							| 53 |  | eqid | ⊢ ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  =  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) | 
						
							| 54 | 53 | elrnmpt | ⊢ ( ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∈  V  →  ( ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ↔  ∃ 𝑦  ∈  𝑥 ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  =  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) ) | 
						
							| 55 | 52 54 | ax-mp | ⊢ ( ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ↔  ∃ 𝑦  ∈  𝑥 ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  =  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) | 
						
							| 56 | 50 55 | sylibr | ⊢ ( ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑧  ∈  ( ◡ 𝐹  “  𝑉 ) )  ∧  ( 𝑡  ∈  𝑥  ∧  𝑧  ∈  𝑡 ) )  →  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) ) | 
						
							| 57 |  | simprr | ⊢ ( ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑧  ∈  ( ◡ 𝐹  “  𝑉 ) )  ∧  ( 𝑡  ∈  𝑥  ∧  𝑧  ∈  𝑡 ) )  →  𝑧  ∈  𝑡 ) | 
						
							| 58 |  | simplr | ⊢ ( ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑧  ∈  ( ◡ 𝐹  “  𝑉 ) )  ∧  ( 𝑡  ∈  𝑥  ∧  𝑧  ∈  𝑡 ) )  →  𝑧  ∈  ( ◡ 𝐹  “  𝑉 ) ) | 
						
							| 59 | 57 58 | elind | ⊢ ( ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑧  ∈  ( ◡ 𝐹  “  𝑉 ) )  ∧  ( 𝑡  ∈  𝑥  ∧  𝑧  ∈  𝑡 ) )  →  𝑧  ∈  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) | 
						
							| 60 |  | eleq2 | ⊢ ( 𝑤  =  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  →  ( 𝑧  ∈  𝑤  ↔  𝑧  ∈  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) ) | 
						
							| 61 | 60 | rspcev | ⊢ ( ( ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∧  𝑧  ∈  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  →  ∃ 𝑤  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) 𝑧  ∈  𝑤 ) | 
						
							| 62 | 56 59 61 | syl2anc | ⊢ ( ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑧  ∈  ( ◡ 𝐹  “  𝑉 ) )  ∧  ( 𝑡  ∈  𝑥  ∧  𝑧  ∈  𝑡 ) )  →  ∃ 𝑤  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) 𝑧  ∈  𝑤 ) | 
						
							| 63 | 62 | rexlimdvaa | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑧  ∈  ( ◡ 𝐹  “  𝑉 ) )  →  ( ∃ 𝑡  ∈  𝑥 𝑧  ∈  𝑡  →  ∃ 𝑤  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) 𝑧  ∈  𝑤 ) ) | 
						
							| 64 |  | eluni2 | ⊢ ( 𝑧  ∈  ∪  𝑥  ↔  ∃ 𝑡  ∈  𝑥 𝑧  ∈  𝑡 ) | 
						
							| 65 |  | eluni2 | ⊢ ( 𝑧  ∈  ∪  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ↔  ∃ 𝑤  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) 𝑧  ∈  𝑤 ) | 
						
							| 66 | 63 64 65 | 3imtr4g | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑧  ∈  ( ◡ 𝐹  “  𝑉 ) )  →  ( 𝑧  ∈  ∪  𝑥  →  𝑧  ∈  ∪  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) ) ) | 
						
							| 67 | 45 66 | mpd | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑧  ∈  ( ◡ 𝐹  “  𝑉 ) )  →  𝑧  ∈  ∪  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) ) | 
						
							| 68 | 38 67 | eqelssd | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  →  ∪  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  =  ( ◡ 𝐹  “  𝑉 ) ) | 
						
							| 69 |  | eldifsn | ⊢ ( 𝑧  ∈  ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∖  { ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) } )  ↔  ( 𝑧  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∧  𝑧  ≠  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) ) | 
						
							| 70 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 71 | 53 | elrnmpt | ⊢ ( 𝑧  ∈  V  →  ( 𝑧  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ↔  ∃ 𝑦  ∈  𝑥 𝑧  =  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) ) | 
						
							| 72 | 70 71 | ax-mp | ⊢ ( 𝑧  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ↔  ∃ 𝑦  ∈  𝑥 𝑧  =  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) | 
						
							| 73 | 47 | equcoms | ⊢ ( 𝑡  =  𝑦  →  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) )  =  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) | 
						
							| 74 | 73 | necon3ai | ⊢ ( ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) )  ≠  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  →  ¬  𝑡  =  𝑦 ) | 
						
							| 75 |  | simpllr | ⊢ ( ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  ∧  𝑦  ∈  𝑥 )  →  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) ) | 
						
							| 76 |  | simplr | ⊢ ( ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  ∧  𝑦  ∈  𝑥 )  →  𝑡  ∈  𝑥 ) | 
						
							| 77 |  | simpr | ⊢ ( ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  𝑥 ) | 
						
							| 78 | 1 | cvmsdisj | ⊢ ( ( 𝑥  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝑡  ∈  𝑥  ∧  𝑦  ∈  𝑥 )  →  ( 𝑡  =  𝑦  ∨  ( 𝑡  ∩  𝑦 )  =  ∅ ) ) | 
						
							| 79 | 75 76 77 78 | syl3anc | ⊢ ( ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  ∧  𝑦  ∈  𝑥 )  →  ( 𝑡  =  𝑦  ∨  ( 𝑡  ∩  𝑦 )  =  ∅ ) ) | 
						
							| 80 | 79 | ord | ⊢ ( ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  ∧  𝑦  ∈  𝑥 )  →  ( ¬  𝑡  =  𝑦  →  ( 𝑡  ∩  𝑦 )  =  ∅ ) ) | 
						
							| 81 |  | inss1 | ⊢ ( ( 𝑡  ∩  𝑦 )  ∩  ( ◡ 𝐹  “  𝑉 ) )  ⊆  ( 𝑡  ∩  𝑦 ) | 
						
							| 82 |  | sseq0 | ⊢ ( ( ( ( 𝑡  ∩  𝑦 )  ∩  ( ◡ 𝐹  “  𝑉 ) )  ⊆  ( 𝑡  ∩  𝑦 )  ∧  ( 𝑡  ∩  𝑦 )  =  ∅ )  →  ( ( 𝑡  ∩  𝑦 )  ∩  ( ◡ 𝐹  “  𝑉 ) )  =  ∅ ) | 
						
							| 83 | 81 82 | mpan | ⊢ ( ( 𝑡  ∩  𝑦 )  =  ∅  →  ( ( 𝑡  ∩  𝑦 )  ∩  ( ◡ 𝐹  “  𝑉 ) )  =  ∅ ) | 
						
							| 84 | 74 80 83 | syl56 | ⊢ ( ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  ∧  𝑦  ∈  𝑥 )  →  ( ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) )  ≠  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  →  ( ( 𝑡  ∩  𝑦 )  ∩  ( ◡ 𝐹  “  𝑉 ) )  =  ∅ ) ) | 
						
							| 85 |  | neeq1 | ⊢ ( 𝑧  =  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) )  →  ( 𝑧  ≠  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ↔  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) )  ≠  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) ) | 
						
							| 86 |  | ineq2 | ⊢ ( 𝑧  =  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) )  →  ( ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∩  𝑧 )  =  ( ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∩  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) ) | 
						
							| 87 |  | inindir | ⊢ ( ( 𝑡  ∩  𝑦 )  ∩  ( ◡ 𝐹  “  𝑉 ) )  =  ( ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∩  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) | 
						
							| 88 | 86 87 | eqtr4di | ⊢ ( 𝑧  =  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) )  →  ( ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∩  𝑧 )  =  ( ( 𝑡  ∩  𝑦 )  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) | 
						
							| 89 | 88 | eqeq1d | ⊢ ( 𝑧  =  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) )  →  ( ( ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∩  𝑧 )  =  ∅  ↔  ( ( 𝑡  ∩  𝑦 )  ∩  ( ◡ 𝐹  “  𝑉 ) )  =  ∅ ) ) | 
						
							| 90 | 85 89 | imbi12d | ⊢ ( 𝑧  =  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) )  →  ( ( 𝑧  ≠  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  →  ( ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∩  𝑧 )  =  ∅ )  ↔  ( ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) )  ≠  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  →  ( ( 𝑡  ∩  𝑦 )  ∩  ( ◡ 𝐹  “  𝑉 ) )  =  ∅ ) ) ) | 
						
							| 91 | 84 90 | syl5ibrcom | ⊢ ( ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  ∧  𝑦  ∈  𝑥 )  →  ( 𝑧  =  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) )  →  ( 𝑧  ≠  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  →  ( ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∩  𝑧 )  =  ∅ ) ) ) | 
						
							| 92 | 91 | rexlimdva | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  ( ∃ 𝑦  ∈  𝑥 𝑧  =  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) )  →  ( 𝑧  ≠  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  →  ( ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∩  𝑧 )  =  ∅ ) ) ) | 
						
							| 93 | 72 92 | biimtrid | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  ( 𝑧  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  →  ( 𝑧  ≠  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  →  ( ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∩  𝑧 )  =  ∅ ) ) ) | 
						
							| 94 | 93 | impd | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  ( ( 𝑧  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∧  𝑧  ≠  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  →  ( ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∩  𝑧 )  =  ∅ ) ) | 
						
							| 95 | 69 94 | biimtrid | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  ( 𝑧  ∈  ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∖  { ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) } )  →  ( ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∩  𝑧 )  =  ∅ ) ) | 
						
							| 96 | 95 | ralrimiv | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  ∀ 𝑧  ∈  ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∖  { ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) } ) ( ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∩  𝑧 )  =  ∅ ) | 
						
							| 97 |  | inss1 | ⊢ ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ⊆  𝑡 | 
						
							| 98 |  | resabs1 | ⊢ ( ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ⊆  𝑡  →  ( ( 𝐹  ↾  𝑡 )  ↾  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  =  ( 𝐹  ↾  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) ) | 
						
							| 99 | 97 98 | ax-mp | ⊢ ( ( 𝐹  ↾  𝑡 )  ↾  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  =  ( 𝐹  ↾  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) | 
						
							| 100 | 1 | cvmshmeo | ⊢ ( ( 𝑥  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝑡  ∈  𝑥 )  →  ( 𝐹  ↾  𝑡 )  ∈  ( ( 𝐶  ↾t  𝑡 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) | 
						
							| 101 | 100 | adantll | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  ( 𝐹  ↾  𝑡 )  ∈  ( ( 𝐶  ↾t  𝑡 ) Homeo ( 𝐽  ↾t  𝑈 ) ) ) | 
						
							| 102 | 6 | adantr | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  𝐶  ∈  Top ) | 
						
							| 103 | 9 | sselda | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  𝑡  ∈  𝐶 ) | 
						
							| 104 |  | elssuni | ⊢ ( 𝑡  ∈  𝐶  →  𝑡  ⊆  ∪  𝐶 ) | 
						
							| 105 | 103 104 | syl | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  𝑡  ⊆  ∪  𝐶 ) | 
						
							| 106 |  | eqid | ⊢ ∪  𝐶  =  ∪  𝐶 | 
						
							| 107 | 106 | restuni | ⊢ ( ( 𝐶  ∈  Top  ∧  𝑡  ⊆  ∪  𝐶 )  →  𝑡  =  ∪  ( 𝐶  ↾t  𝑡 ) ) | 
						
							| 108 | 102 105 107 | syl2anc | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  𝑡  =  ∪  ( 𝐶  ↾t  𝑡 ) ) | 
						
							| 109 | 97 108 | sseqtrid | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ⊆  ∪  ( 𝐶  ↾t  𝑡 ) ) | 
						
							| 110 |  | eqid | ⊢ ∪  ( 𝐶  ↾t  𝑡 )  =  ∪  ( 𝐶  ↾t  𝑡 ) | 
						
							| 111 | 110 | hmeores | ⊢ ( ( ( 𝐹  ↾  𝑡 )  ∈  ( ( 𝐶  ↾t  𝑡 ) Homeo ( 𝐽  ↾t  𝑈 ) )  ∧  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ⊆  ∪  ( 𝐶  ↾t  𝑡 ) )  →  ( ( 𝐹  ↾  𝑡 )  ↾  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∈  ( ( ( 𝐶  ↾t  𝑡 )  ↾t  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) Homeo ( ( 𝐽  ↾t  𝑈 )  ↾t  ( ( 𝐹  ↾  𝑡 )  “  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) ) ) ) | 
						
							| 112 | 101 109 111 | syl2anc | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  ( ( 𝐹  ↾  𝑡 )  ↾  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∈  ( ( ( 𝐶  ↾t  𝑡 )  ↾t  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) Homeo ( ( 𝐽  ↾t  𝑈 )  ↾t  ( ( 𝐹  ↾  𝑡 )  “  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) ) ) ) | 
						
							| 113 | 99 112 | eqeltrrid | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  ( 𝐹  ↾  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∈  ( ( ( 𝐶  ↾t  𝑡 )  ↾t  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) Homeo ( ( 𝐽  ↾t  𝑈 )  ↾t  ( ( 𝐹  ↾  𝑡 )  “  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) ) ) ) | 
						
							| 114 | 97 | a1i | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ⊆  𝑡 ) | 
						
							| 115 |  | simpr | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  𝑡  ∈  𝑥 ) | 
						
							| 116 |  | restabs | ⊢ ( ( 𝐶  ∈  Top  ∧  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ⊆  𝑡  ∧  𝑡  ∈  𝑥 )  →  ( ( 𝐶  ↾t  𝑡 )  ↾t  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  =  ( 𝐶  ↾t  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) ) | 
						
							| 117 | 102 114 115 116 | syl3anc | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  ( ( 𝐶  ↾t  𝑡 )  ↾t  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  =  ( 𝐶  ↾t  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) ) | 
						
							| 118 |  | incom | ⊢ ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  =  ( ( ◡ 𝐹  “  𝑉 )  ∩  𝑡 ) | 
						
							| 119 |  | cnvresima | ⊢ ( ◡ ( 𝐹  ↾  𝑡 )  “  𝑉 )  =  ( ( ◡ 𝐹  “  𝑉 )  ∩  𝑡 ) | 
						
							| 120 | 118 119 | eqtr4i | ⊢ ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  =  ( ◡ ( 𝐹  ↾  𝑡 )  “  𝑉 ) | 
						
							| 121 | 120 | imaeq2i | ⊢ ( ( 𝐹  ↾  𝑡 )  “  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  =  ( ( 𝐹  ↾  𝑡 )  “  ( ◡ ( 𝐹  ↾  𝑡 )  “  𝑉 ) ) | 
						
							| 122 | 4 | adantr | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 123 |  | simplr | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) ) | 
						
							| 124 | 1 | cvmsf1o | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝑡  ∈  𝑥 )  →  ( 𝐹  ↾  𝑡 ) : 𝑡 –1-1-onto→ 𝑈 ) | 
						
							| 125 | 122 123 115 124 | syl3anc | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  ( 𝐹  ↾  𝑡 ) : 𝑡 –1-1-onto→ 𝑈 ) | 
						
							| 126 |  | f1ofo | ⊢ ( ( 𝐹  ↾  𝑡 ) : 𝑡 –1-1-onto→ 𝑈  →  ( 𝐹  ↾  𝑡 ) : 𝑡 –onto→ 𝑈 ) | 
						
							| 127 | 125 126 | syl | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  ( 𝐹  ↾  𝑡 ) : 𝑡 –onto→ 𝑈 ) | 
						
							| 128 | 39 | adantr | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  𝑉  ⊆  𝑈 ) | 
						
							| 129 |  | foimacnv | ⊢ ( ( ( 𝐹  ↾  𝑡 ) : 𝑡 –onto→ 𝑈  ∧  𝑉  ⊆  𝑈 )  →  ( ( 𝐹  ↾  𝑡 )  “  ( ◡ ( 𝐹  ↾  𝑡 )  “  𝑉 ) )  =  𝑉 ) | 
						
							| 130 | 127 128 129 | syl2anc | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  ( ( 𝐹  ↾  𝑡 )  “  ( ◡ ( 𝐹  ↾  𝑡 )  “  𝑉 ) )  =  𝑉 ) | 
						
							| 131 | 121 130 | eqtrid | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  ( ( 𝐹  ↾  𝑡 )  “  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  =  𝑉 ) | 
						
							| 132 | 131 | oveq2d | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  ( ( 𝐽  ↾t  𝑈 )  ↾t  ( ( 𝐹  ↾  𝑡 )  “  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) )  =  ( ( 𝐽  ↾t  𝑈 )  ↾t  𝑉 ) ) | 
						
							| 133 |  | cvmtop2 | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐽  ∈  Top ) | 
						
							| 134 | 4 133 | syl | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  →  𝐽  ∈  Top ) | 
						
							| 135 | 1 | cvmsrcl | ⊢ ( 𝑥  ∈  ( 𝑆 ‘ 𝑈 )  →  𝑈  ∈  𝐽 ) | 
						
							| 136 | 135 | adantl | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  →  𝑈  ∈  𝐽 ) | 
						
							| 137 |  | restabs | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑉  ⊆  𝑈  ∧  𝑈  ∈  𝐽 )  →  ( ( 𝐽  ↾t  𝑈 )  ↾t  𝑉 )  =  ( 𝐽  ↾t  𝑉 ) ) | 
						
							| 138 | 134 39 136 137 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  →  ( ( 𝐽  ↾t  𝑈 )  ↾t  𝑉 )  =  ( 𝐽  ↾t  𝑉 ) ) | 
						
							| 139 | 138 | adantr | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  ( ( 𝐽  ↾t  𝑈 )  ↾t  𝑉 )  =  ( 𝐽  ↾t  𝑉 ) ) | 
						
							| 140 | 132 139 | eqtrd | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  ( ( 𝐽  ↾t  𝑈 )  ↾t  ( ( 𝐹  ↾  𝑡 )  “  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) )  =  ( 𝐽  ↾t  𝑉 ) ) | 
						
							| 141 | 117 140 | oveq12d | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  ( ( ( 𝐶  ↾t  𝑡 )  ↾t  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) Homeo ( ( 𝐽  ↾t  𝑈 )  ↾t  ( ( 𝐹  ↾  𝑡 )  “  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) ) )  =  ( ( 𝐶  ↾t  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) Homeo ( 𝐽  ↾t  𝑉 ) ) ) | 
						
							| 142 | 113 141 | eleqtrd | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  ( 𝐹  ↾  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∈  ( ( 𝐶  ↾t  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) Homeo ( 𝐽  ↾t  𝑉 ) ) ) | 
						
							| 143 | 96 142 | jca | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  ∧  𝑡  ∈  𝑥 )  →  ( ∀ 𝑧  ∈  ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∖  { ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) } ) ( ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∩  𝑧 )  =  ∅  ∧  ( 𝐹  ↾  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∈  ( ( 𝐶  ↾t  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) Homeo ( 𝐽  ↾t  𝑉 ) ) ) ) | 
						
							| 144 | 143 | ralrimiva | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  →  ∀ 𝑡  ∈  𝑥 ( ∀ 𝑧  ∈  ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∖  { ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) } ) ( ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∩  𝑧 )  =  ∅  ∧  ( 𝐹  ↾  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∈  ( ( 𝐶  ↾t  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) Homeo ( 𝐽  ↾t  𝑉 ) ) ) ) | 
						
							| 145 | 52 | rgenw | ⊢ ∀ 𝑡  ∈  𝑥 ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∈  V | 
						
							| 146 | 47 | cbvmptv | ⊢ ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  =  ( 𝑡  ∈  𝑥  ↦  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) | 
						
							| 147 |  | sneq | ⊢ ( 𝑤  =  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  →  { 𝑤 }  =  { ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) } ) | 
						
							| 148 | 147 | difeq2d | ⊢ ( 𝑤  =  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  →  ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∖  { 𝑤 } )  =  ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∖  { ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) } ) ) | 
						
							| 149 |  | ineq1 | ⊢ ( 𝑤  =  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  →  ( 𝑤  ∩  𝑧 )  =  ( ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∩  𝑧 ) ) | 
						
							| 150 | 149 | eqeq1d | ⊢ ( 𝑤  =  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  →  ( ( 𝑤  ∩  𝑧 )  =  ∅  ↔  ( ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∩  𝑧 )  =  ∅ ) ) | 
						
							| 151 | 148 150 | raleqbidv | ⊢ ( 𝑤  =  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  →  ( ∀ 𝑧  ∈  ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∖  { 𝑤 } ) ( 𝑤  ∩  𝑧 )  =  ∅  ↔  ∀ 𝑧  ∈  ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∖  { ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) } ) ( ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∩  𝑧 )  =  ∅ ) ) | 
						
							| 152 |  | reseq2 | ⊢ ( 𝑤  =  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  →  ( 𝐹  ↾  𝑤 )  =  ( 𝐹  ↾  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) ) | 
						
							| 153 |  | oveq2 | ⊢ ( 𝑤  =  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  →  ( 𝐶  ↾t  𝑤 )  =  ( 𝐶  ↾t  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) ) | 
						
							| 154 | 153 | oveq1d | ⊢ ( 𝑤  =  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  →  ( ( 𝐶  ↾t  𝑤 ) Homeo ( 𝐽  ↾t  𝑉 ) )  =  ( ( 𝐶  ↾t  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) Homeo ( 𝐽  ↾t  𝑉 ) ) ) | 
						
							| 155 | 152 154 | eleq12d | ⊢ ( 𝑤  =  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  →  ( ( 𝐹  ↾  𝑤 )  ∈  ( ( 𝐶  ↾t  𝑤 ) Homeo ( 𝐽  ↾t  𝑉 ) )  ↔  ( 𝐹  ↾  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∈  ( ( 𝐶  ↾t  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) Homeo ( 𝐽  ↾t  𝑉 ) ) ) ) | 
						
							| 156 | 151 155 | anbi12d | ⊢ ( 𝑤  =  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  →  ( ( ∀ 𝑧  ∈  ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∖  { 𝑤 } ) ( 𝑤  ∩  𝑧 )  =  ∅  ∧  ( 𝐹  ↾  𝑤 )  ∈  ( ( 𝐶  ↾t  𝑤 ) Homeo ( 𝐽  ↾t  𝑉 ) ) )  ↔  ( ∀ 𝑧  ∈  ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∖  { ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) } ) ( ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∩  𝑧 )  =  ∅  ∧  ( 𝐹  ↾  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∈  ( ( 𝐶  ↾t  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) Homeo ( 𝐽  ↾t  𝑉 ) ) ) ) ) | 
						
							| 157 | 146 156 | ralrnmptw | ⊢ ( ∀ 𝑡  ∈  𝑥 ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∈  V  →  ( ∀ 𝑤  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) ( ∀ 𝑧  ∈  ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∖  { 𝑤 } ) ( 𝑤  ∩  𝑧 )  =  ∅  ∧  ( 𝐹  ↾  𝑤 )  ∈  ( ( 𝐶  ↾t  𝑤 ) Homeo ( 𝐽  ↾t  𝑉 ) ) )  ↔  ∀ 𝑡  ∈  𝑥 ( ∀ 𝑧  ∈  ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∖  { ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) } ) ( ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∩  𝑧 )  =  ∅  ∧  ( 𝐹  ↾  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∈  ( ( 𝐶  ↾t  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) Homeo ( 𝐽  ↾t  𝑉 ) ) ) ) ) | 
						
							| 158 | 145 157 | ax-mp | ⊢ ( ∀ 𝑤  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) ( ∀ 𝑧  ∈  ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∖  { 𝑤 } ) ( 𝑤  ∩  𝑧 )  =  ∅  ∧  ( 𝐹  ↾  𝑤 )  ∈  ( ( 𝐶  ↾t  𝑤 ) Homeo ( 𝐽  ↾t  𝑉 ) ) )  ↔  ∀ 𝑡  ∈  𝑥 ( ∀ 𝑧  ∈  ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∖  { ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) } ) ( ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) )  ∩  𝑧 )  =  ∅  ∧  ( 𝐹  ↾  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∈  ( ( 𝐶  ↾t  ( 𝑡  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) Homeo ( 𝐽  ↾t  𝑉 ) ) ) ) | 
						
							| 159 | 144 158 | sylibr | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  →  ∀ 𝑤  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) ( ∀ 𝑧  ∈  ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∖  { 𝑤 } ) ( 𝑤  ∩  𝑧 )  =  ∅  ∧  ( 𝐹  ↾  𝑤 )  ∈  ( ( 𝐶  ↾t  𝑤 ) Homeo ( 𝐽  ↾t  𝑉 ) ) ) ) | 
						
							| 160 | 68 159 | jca | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  →  ( ∪  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  =  ( ◡ 𝐹  “  𝑉 )  ∧  ∀ 𝑤  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) ( ∀ 𝑧  ∈  ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∖  { 𝑤 } ) ( 𝑤  ∩  𝑧 )  =  ∅  ∧  ( 𝐹  ↾  𝑤 )  ∈  ( ( 𝐶  ↾t  𝑤 ) Homeo ( 𝐽  ↾t  𝑉 ) ) ) ) ) | 
						
							| 161 | 1 | cvmscbv | ⊢ 𝑆  =  ( 𝑎  ∈  𝐽  ↦  { 𝑏  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑏  =  ( ◡ 𝐹  “  𝑎 )  ∧  ∀ 𝑤  ∈  𝑏 ( ∀ 𝑧  ∈  ( 𝑏  ∖  { 𝑤 } ) ( 𝑤  ∩  𝑧 )  =  ∅  ∧  ( 𝐹  ↾  𝑤 )  ∈  ( ( 𝐶  ↾t  𝑤 ) Homeo ( 𝐽  ↾t  𝑎 ) ) ) ) } ) | 
						
							| 162 | 161 | cvmsval | ⊢ ( 𝐶  ∈  Top  →  ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∈  ( 𝑆 ‘ 𝑉 )  ↔  ( 𝑉  ∈  𝐽  ∧  ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ⊆  𝐶  ∧  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ≠  ∅ )  ∧  ( ∪  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  =  ( ◡ 𝐹  “  𝑉 )  ∧  ∀ 𝑤  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) ( ∀ 𝑧  ∈  ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∖  { 𝑤 } ) ( 𝑤  ∩  𝑧 )  =  ∅  ∧  ( 𝐹  ↾  𝑤 )  ∈  ( ( 𝐶  ↾t  𝑤 ) Homeo ( 𝐽  ↾t  𝑉 ) ) ) ) ) ) ) | 
						
							| 163 | 6 162 | syl | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  →  ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∈  ( 𝑆 ‘ 𝑉 )  ↔  ( 𝑉  ∈  𝐽  ∧  ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ⊆  𝐶  ∧  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ≠  ∅ )  ∧  ( ∪  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  =  ( ◡ 𝐹  “  𝑉 )  ∧  ∀ 𝑤  ∈  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) ) ( ∀ 𝑧  ∈  ( ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∖  { 𝑤 } ) ( 𝑤  ∩  𝑧 )  =  ∅  ∧  ( 𝐹  ↾  𝑤 )  ∈  ( ( 𝐶  ↾t  𝑤 ) Homeo ( 𝐽  ↾t  𝑉 ) ) ) ) ) ) ) | 
						
							| 164 | 3 30 160 163 | mpbir3and | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  →  ran  ( 𝑦  ∈  𝑥  ↦  ( 𝑦  ∩  ( ◡ 𝐹  “  𝑉 ) ) )  ∈  ( 𝑆 ‘ 𝑉 ) ) | 
						
							| 165 | 164 | ne0d | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  ∧  𝑥  ∈  ( 𝑆 ‘ 𝑈 ) )  →  ( 𝑆 ‘ 𝑉 )  ≠  ∅ ) | 
						
							| 166 | 165 | ex | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  →  ( 𝑥  ∈  ( 𝑆 ‘ 𝑈 )  →  ( 𝑆 ‘ 𝑉 )  ≠  ∅ ) ) | 
						
							| 167 | 166 | exlimdv | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  →  ( ∃ 𝑥 𝑥  ∈  ( 𝑆 ‘ 𝑈 )  →  ( 𝑆 ‘ 𝑉 )  ≠  ∅ ) ) | 
						
							| 168 | 2 167 | biimtrid | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑉  ∈  𝐽  ∧  𝑉  ⊆  𝑈 )  →  ( ( 𝑆 ‘ 𝑈 )  ≠  ∅  →  ( 𝑆 ‘ 𝑉 )  ≠  ∅ ) ) |