| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmcov.1 | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 2 |  | simp1 | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑈  ∈  𝐽  ∧  𝑃  ∈  𝑈 )  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 3 |  | simp3 | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑈  ∈  𝐽  ∧  𝑃  ∈  𝑈 )  →  𝑃  ∈  𝑈 ) | 
						
							| 4 |  | simp2 | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑈  ∈  𝐽  ∧  𝑃  ∈  𝑈 )  →  𝑈  ∈  𝐽 ) | 
						
							| 5 |  | elunii | ⊢ ( ( 𝑃  ∈  𝑈  ∧  𝑈  ∈  𝐽 )  →  𝑃  ∈  ∪  𝐽 ) | 
						
							| 6 | 3 4 5 | syl2anc | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑈  ∈  𝐽  ∧  𝑃  ∈  𝑈 )  →  𝑃  ∈  ∪  𝐽 ) | 
						
							| 7 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 8 | 1 7 | cvmcov | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑃  ∈  ∪  𝐽 )  →  ∃ 𝑦  ∈  𝐽 ( 𝑃  ∈  𝑦  ∧  ( 𝑆 ‘ 𝑦 )  ≠  ∅ ) ) | 
						
							| 9 | 2 6 8 | syl2anc | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑈  ∈  𝐽  ∧  𝑃  ∈  𝑈 )  →  ∃ 𝑦  ∈  𝐽 ( 𝑃  ∈  𝑦  ∧  ( 𝑆 ‘ 𝑦 )  ≠  ∅ ) ) | 
						
							| 10 |  | inss2 | ⊢ ( 𝑦  ∩  𝑈 )  ⊆  𝑈 | 
						
							| 11 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 12 | 11 | inex1 | ⊢ ( 𝑦  ∩  𝑈 )  ∈  V | 
						
							| 13 | 12 | elpw | ⊢ ( ( 𝑦  ∩  𝑈 )  ∈  𝒫  𝑈  ↔  ( 𝑦  ∩  𝑈 )  ⊆  𝑈 ) | 
						
							| 14 | 10 13 | mpbir | ⊢ ( 𝑦  ∩  𝑈 )  ∈  𝒫  𝑈 | 
						
							| 15 | 14 | a1i | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑈  ∈  𝐽  ∧  𝑃  ∈  𝑈 )  ∧  ( 𝑦  ∈  𝐽  ∧  ( 𝑃  ∈  𝑦  ∧  ( 𝑆 ‘ 𝑦 )  ≠  ∅ ) ) )  →  ( 𝑦  ∩  𝑈 )  ∈  𝒫  𝑈 ) | 
						
							| 16 |  | simprrl | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑈  ∈  𝐽  ∧  𝑃  ∈  𝑈 )  ∧  ( 𝑦  ∈  𝐽  ∧  ( 𝑃  ∈  𝑦  ∧  ( 𝑆 ‘ 𝑦 )  ≠  ∅ ) ) )  →  𝑃  ∈  𝑦 ) | 
						
							| 17 | 3 | adantr | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑈  ∈  𝐽  ∧  𝑃  ∈  𝑈 )  ∧  ( 𝑦  ∈  𝐽  ∧  ( 𝑃  ∈  𝑦  ∧  ( 𝑆 ‘ 𝑦 )  ≠  ∅ ) ) )  →  𝑃  ∈  𝑈 ) | 
						
							| 18 | 16 17 | elind | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑈  ∈  𝐽  ∧  𝑃  ∈  𝑈 )  ∧  ( 𝑦  ∈  𝐽  ∧  ( 𝑃  ∈  𝑦  ∧  ( 𝑆 ‘ 𝑦 )  ≠  ∅ ) ) )  →  𝑃  ∈  ( 𝑦  ∩  𝑈 ) ) | 
						
							| 19 |  | simprrr | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑈  ∈  𝐽  ∧  𝑃  ∈  𝑈 )  ∧  ( 𝑦  ∈  𝐽  ∧  ( 𝑃  ∈  𝑦  ∧  ( 𝑆 ‘ 𝑦 )  ≠  ∅ ) ) )  →  ( 𝑆 ‘ 𝑦 )  ≠  ∅ ) | 
						
							| 20 | 2 | adantr | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑈  ∈  𝐽  ∧  𝑃  ∈  𝑈 )  ∧  ( 𝑦  ∈  𝐽  ∧  ( 𝑃  ∈  𝑦  ∧  ( 𝑆 ‘ 𝑦 )  ≠  ∅ ) ) )  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 21 |  | cvmtop2 | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐽  ∈  Top ) | 
						
							| 22 | 20 21 | syl | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑈  ∈  𝐽  ∧  𝑃  ∈  𝑈 )  ∧  ( 𝑦  ∈  𝐽  ∧  ( 𝑃  ∈  𝑦  ∧  ( 𝑆 ‘ 𝑦 )  ≠  ∅ ) ) )  →  𝐽  ∈  Top ) | 
						
							| 23 |  | simprl | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑈  ∈  𝐽  ∧  𝑃  ∈  𝑈 )  ∧  ( 𝑦  ∈  𝐽  ∧  ( 𝑃  ∈  𝑦  ∧  ( 𝑆 ‘ 𝑦 )  ≠  ∅ ) ) )  →  𝑦  ∈  𝐽 ) | 
						
							| 24 | 4 | adantr | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑈  ∈  𝐽  ∧  𝑃  ∈  𝑈 )  ∧  ( 𝑦  ∈  𝐽  ∧  ( 𝑃  ∈  𝑦  ∧  ( 𝑆 ‘ 𝑦 )  ≠  ∅ ) ) )  →  𝑈  ∈  𝐽 ) | 
						
							| 25 |  | inopn | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑦  ∈  𝐽  ∧  𝑈  ∈  𝐽 )  →  ( 𝑦  ∩  𝑈 )  ∈  𝐽 ) | 
						
							| 26 | 22 23 24 25 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑈  ∈  𝐽  ∧  𝑃  ∈  𝑈 )  ∧  ( 𝑦  ∈  𝐽  ∧  ( 𝑃  ∈  𝑦  ∧  ( 𝑆 ‘ 𝑦 )  ≠  ∅ ) ) )  →  ( 𝑦  ∩  𝑈 )  ∈  𝐽 ) | 
						
							| 27 |  | inss1 | ⊢ ( 𝑦  ∩  𝑈 )  ⊆  𝑦 | 
						
							| 28 | 27 | a1i | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑈  ∈  𝐽  ∧  𝑃  ∈  𝑈 )  ∧  ( 𝑦  ∈  𝐽  ∧  ( 𝑃  ∈  𝑦  ∧  ( 𝑆 ‘ 𝑦 )  ≠  ∅ ) ) )  →  ( 𝑦  ∩  𝑈 )  ⊆  𝑦 ) | 
						
							| 29 | 1 | cvmsss2 | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  ( 𝑦  ∩  𝑈 )  ∈  𝐽  ∧  ( 𝑦  ∩  𝑈 )  ⊆  𝑦 )  →  ( ( 𝑆 ‘ 𝑦 )  ≠  ∅  →  ( 𝑆 ‘ ( 𝑦  ∩  𝑈 ) )  ≠  ∅ ) ) | 
						
							| 30 | 20 26 28 29 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑈  ∈  𝐽  ∧  𝑃  ∈  𝑈 )  ∧  ( 𝑦  ∈  𝐽  ∧  ( 𝑃  ∈  𝑦  ∧  ( 𝑆 ‘ 𝑦 )  ≠  ∅ ) ) )  →  ( ( 𝑆 ‘ 𝑦 )  ≠  ∅  →  ( 𝑆 ‘ ( 𝑦  ∩  𝑈 ) )  ≠  ∅ ) ) | 
						
							| 31 | 19 30 | mpd | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑈  ∈  𝐽  ∧  𝑃  ∈  𝑈 )  ∧  ( 𝑦  ∈  𝐽  ∧  ( 𝑃  ∈  𝑦  ∧  ( 𝑆 ‘ 𝑦 )  ≠  ∅ ) ) )  →  ( 𝑆 ‘ ( 𝑦  ∩  𝑈 ) )  ≠  ∅ ) | 
						
							| 32 |  | eleq2 | ⊢ ( 𝑥  =  ( 𝑦  ∩  𝑈 )  →  ( 𝑃  ∈  𝑥  ↔  𝑃  ∈  ( 𝑦  ∩  𝑈 ) ) ) | 
						
							| 33 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑦  ∩  𝑈 )  →  ( 𝑆 ‘ 𝑥 )  =  ( 𝑆 ‘ ( 𝑦  ∩  𝑈 ) ) ) | 
						
							| 34 | 33 | neeq1d | ⊢ ( 𝑥  =  ( 𝑦  ∩  𝑈 )  →  ( ( 𝑆 ‘ 𝑥 )  ≠  ∅  ↔  ( 𝑆 ‘ ( 𝑦  ∩  𝑈 ) )  ≠  ∅ ) ) | 
						
							| 35 | 32 34 | anbi12d | ⊢ ( 𝑥  =  ( 𝑦  ∩  𝑈 )  →  ( ( 𝑃  ∈  𝑥  ∧  ( 𝑆 ‘ 𝑥 )  ≠  ∅ )  ↔  ( 𝑃  ∈  ( 𝑦  ∩  𝑈 )  ∧  ( 𝑆 ‘ ( 𝑦  ∩  𝑈 ) )  ≠  ∅ ) ) ) | 
						
							| 36 | 35 | rspcev | ⊢ ( ( ( 𝑦  ∩  𝑈 )  ∈  𝒫  𝑈  ∧  ( 𝑃  ∈  ( 𝑦  ∩  𝑈 )  ∧  ( 𝑆 ‘ ( 𝑦  ∩  𝑈 ) )  ≠  ∅ ) )  →  ∃ 𝑥  ∈  𝒫  𝑈 ( 𝑃  ∈  𝑥  ∧  ( 𝑆 ‘ 𝑥 )  ≠  ∅ ) ) | 
						
							| 37 | 15 18 31 36 | syl12anc | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑈  ∈  𝐽  ∧  𝑃  ∈  𝑈 )  ∧  ( 𝑦  ∈  𝐽  ∧  ( 𝑃  ∈  𝑦  ∧  ( 𝑆 ‘ 𝑦 )  ≠  ∅ ) ) )  →  ∃ 𝑥  ∈  𝒫  𝑈 ( 𝑃  ∈  𝑥  ∧  ( 𝑆 ‘ 𝑥 )  ≠  ∅ ) ) | 
						
							| 38 | 9 37 | rexlimddv | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑈  ∈  𝐽  ∧  𝑃  ∈  𝑈 )  →  ∃ 𝑥  ∈  𝒫  𝑈 ( 𝑃  ∈  𝑥  ∧  ( 𝑆 ‘ 𝑥 )  ≠  ∅ ) ) |