Step |
Hyp |
Ref |
Expression |
1 |
|
cvmcov.1 |
⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
2 |
|
cvmcov.2 |
⊢ 𝑋 = ∪ 𝐽 |
3 |
1 2
|
iscvm |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ↔ ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ( 𝑆 ‘ 𝑘 ) ≠ ∅ ) ) ) |
4 |
3
|
simprbi |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ( 𝑆 ‘ 𝑘 ) ≠ ∅ ) ) |
5 |
|
eleq1 |
⊢ ( 𝑥 = 𝑃 → ( 𝑥 ∈ 𝑘 ↔ 𝑃 ∈ 𝑘 ) ) |
6 |
5
|
anbi1d |
⊢ ( 𝑥 = 𝑃 → ( ( 𝑥 ∈ 𝑘 ∧ ( 𝑆 ‘ 𝑘 ) ≠ ∅ ) ↔ ( 𝑃 ∈ 𝑘 ∧ ( 𝑆 ‘ 𝑘 ) ≠ ∅ ) ) ) |
7 |
6
|
rexbidv |
⊢ ( 𝑥 = 𝑃 → ( ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ( 𝑆 ‘ 𝑘 ) ≠ ∅ ) ↔ ∃ 𝑘 ∈ 𝐽 ( 𝑃 ∈ 𝑘 ∧ ( 𝑆 ‘ 𝑘 ) ≠ ∅ ) ) ) |
8 |
7
|
rspcv |
⊢ ( 𝑃 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑘 ∈ 𝐽 ( 𝑥 ∈ 𝑘 ∧ ( 𝑆 ‘ 𝑘 ) ≠ ∅ ) → ∃ 𝑘 ∈ 𝐽 ( 𝑃 ∈ 𝑘 ∧ ( 𝑆 ‘ 𝑘 ) ≠ ∅ ) ) ) |
9 |
4 8
|
mpan9 |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑃 ∈ 𝑋 ) → ∃ 𝑘 ∈ 𝐽 ( 𝑃 ∈ 𝑘 ∧ ( 𝑆 ‘ 𝑘 ) ≠ ∅ ) ) |
10 |
|
nfv |
⊢ Ⅎ 𝑘 𝑃 ∈ 𝑥 |
11 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
12 |
1 11
|
nfcxfr |
⊢ Ⅎ 𝑘 𝑆 |
13 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑥 |
14 |
12 13
|
nffv |
⊢ Ⅎ 𝑘 ( 𝑆 ‘ 𝑥 ) |
15 |
|
nfcv |
⊢ Ⅎ 𝑘 ∅ |
16 |
14 15
|
nfne |
⊢ Ⅎ 𝑘 ( 𝑆 ‘ 𝑥 ) ≠ ∅ |
17 |
10 16
|
nfan |
⊢ Ⅎ 𝑘 ( 𝑃 ∈ 𝑥 ∧ ( 𝑆 ‘ 𝑥 ) ≠ ∅ ) |
18 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝑃 ∈ 𝑘 ∧ ( 𝑆 ‘ 𝑘 ) ≠ ∅ ) |
19 |
|
eleq2w |
⊢ ( 𝑥 = 𝑘 → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑘 ) ) |
20 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑘 ) ) |
21 |
20
|
neeq1d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝑆 ‘ 𝑥 ) ≠ ∅ ↔ ( 𝑆 ‘ 𝑘 ) ≠ ∅ ) ) |
22 |
19 21
|
anbi12d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝑃 ∈ 𝑥 ∧ ( 𝑆 ‘ 𝑥 ) ≠ ∅ ) ↔ ( 𝑃 ∈ 𝑘 ∧ ( 𝑆 ‘ 𝑘 ) ≠ ∅ ) ) ) |
23 |
17 18 22
|
cbvrexw |
⊢ ( ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑆 ‘ 𝑥 ) ≠ ∅ ) ↔ ∃ 𝑘 ∈ 𝐽 ( 𝑃 ∈ 𝑘 ∧ ( 𝑆 ‘ 𝑘 ) ≠ ∅ ) ) |
24 |
9 23
|
sylibr |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑃 ∈ 𝑋 ) → ∃ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 ∧ ( 𝑆 ‘ 𝑥 ) ≠ ∅ ) ) |