Metamath Proof Explorer


Theorem cvmcov

Description: Property of a covering map. In order to make the covering property more manageable, we define here the set S ( k ) of all even coverings of an open set k in the range. Then the covering property states that every point has a neighborhood which has an even covering. (Contributed by Mario Carneiro, 13-Feb-2015)

Ref Expression
Hypotheses cvmcov.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
cvmcov.2 𝑋 = 𝐽
Assertion cvmcov ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑃𝑋 ) → ∃ 𝑥𝐽 ( 𝑃𝑥 ∧ ( 𝑆𝑥 ) ≠ ∅ ) )

Proof

Step Hyp Ref Expression
1 cvmcov.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
2 cvmcov.2 𝑋 = 𝐽
3 1 2 iscvm ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ↔ ( ( 𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) ∧ ∀ 𝑥𝑋𝑘𝐽 ( 𝑥𝑘 ∧ ( 𝑆𝑘 ) ≠ ∅ ) ) )
4 3 simprbi ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → ∀ 𝑥𝑋𝑘𝐽 ( 𝑥𝑘 ∧ ( 𝑆𝑘 ) ≠ ∅ ) )
5 eleq1 ( 𝑥 = 𝑃 → ( 𝑥𝑘𝑃𝑘 ) )
6 5 anbi1d ( 𝑥 = 𝑃 → ( ( 𝑥𝑘 ∧ ( 𝑆𝑘 ) ≠ ∅ ) ↔ ( 𝑃𝑘 ∧ ( 𝑆𝑘 ) ≠ ∅ ) ) )
7 6 rexbidv ( 𝑥 = 𝑃 → ( ∃ 𝑘𝐽 ( 𝑥𝑘 ∧ ( 𝑆𝑘 ) ≠ ∅ ) ↔ ∃ 𝑘𝐽 ( 𝑃𝑘 ∧ ( 𝑆𝑘 ) ≠ ∅ ) ) )
8 7 rspcv ( 𝑃𝑋 → ( ∀ 𝑥𝑋𝑘𝐽 ( 𝑥𝑘 ∧ ( 𝑆𝑘 ) ≠ ∅ ) → ∃ 𝑘𝐽 ( 𝑃𝑘 ∧ ( 𝑆𝑘 ) ≠ ∅ ) ) )
9 4 8 mpan9 ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑃𝑋 ) → ∃ 𝑘𝐽 ( 𝑃𝑘 ∧ ( 𝑆𝑘 ) ≠ ∅ ) )
10 nfv 𝑘 𝑃𝑥
11 nfmpt1 𝑘 ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
12 1 11 nfcxfr 𝑘 𝑆
13 nfcv 𝑘 𝑥
14 12 13 nffv 𝑘 ( 𝑆𝑥 )
15 nfcv 𝑘
16 14 15 nfne 𝑘 ( 𝑆𝑥 ) ≠ ∅
17 10 16 nfan 𝑘 ( 𝑃𝑥 ∧ ( 𝑆𝑥 ) ≠ ∅ )
18 nfv 𝑥 ( 𝑃𝑘 ∧ ( 𝑆𝑘 ) ≠ ∅ )
19 eleq2w ( 𝑥 = 𝑘 → ( 𝑃𝑥𝑃𝑘 ) )
20 fveq2 ( 𝑥 = 𝑘 → ( 𝑆𝑥 ) = ( 𝑆𝑘 ) )
21 20 neeq1d ( 𝑥 = 𝑘 → ( ( 𝑆𝑥 ) ≠ ∅ ↔ ( 𝑆𝑘 ) ≠ ∅ ) )
22 19 21 anbi12d ( 𝑥 = 𝑘 → ( ( 𝑃𝑥 ∧ ( 𝑆𝑥 ) ≠ ∅ ) ↔ ( 𝑃𝑘 ∧ ( 𝑆𝑘 ) ≠ ∅ ) ) )
23 17 18 22 cbvrexw ( ∃ 𝑥𝐽 ( 𝑃𝑥 ∧ ( 𝑆𝑥 ) ≠ ∅ ) ↔ ∃ 𝑘𝐽 ( 𝑃𝑘 ∧ ( 𝑆𝑘 ) ≠ ∅ ) )
24 9 23 sylibr ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑃𝑋 ) → ∃ 𝑥𝐽 ( 𝑃𝑥 ∧ ( 𝑆𝑥 ) ≠ ∅ ) )