Step |
Hyp |
Ref |
Expression |
1 |
|
cvmcov.1 |
|- S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) |
2 |
|
cvmcov.2 |
|- X = U. J |
3 |
1 2
|
iscvm |
|- ( F e. ( C CovMap J ) <-> ( ( C e. Top /\ J e. Top /\ F e. ( C Cn J ) ) /\ A. x e. X E. k e. J ( x e. k /\ ( S ` k ) =/= (/) ) ) ) |
4 |
3
|
simprbi |
|- ( F e. ( C CovMap J ) -> A. x e. X E. k e. J ( x e. k /\ ( S ` k ) =/= (/) ) ) |
5 |
|
eleq1 |
|- ( x = P -> ( x e. k <-> P e. k ) ) |
6 |
5
|
anbi1d |
|- ( x = P -> ( ( x e. k /\ ( S ` k ) =/= (/) ) <-> ( P e. k /\ ( S ` k ) =/= (/) ) ) ) |
7 |
6
|
rexbidv |
|- ( x = P -> ( E. k e. J ( x e. k /\ ( S ` k ) =/= (/) ) <-> E. k e. J ( P e. k /\ ( S ` k ) =/= (/) ) ) ) |
8 |
7
|
rspcv |
|- ( P e. X -> ( A. x e. X E. k e. J ( x e. k /\ ( S ` k ) =/= (/) ) -> E. k e. J ( P e. k /\ ( S ` k ) =/= (/) ) ) ) |
9 |
4 8
|
mpan9 |
|- ( ( F e. ( C CovMap J ) /\ P e. X ) -> E. k e. J ( P e. k /\ ( S ` k ) =/= (/) ) ) |
10 |
|
nfv |
|- F/ k P e. x |
11 |
|
nfmpt1 |
|- F/_ k ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) |
12 |
1 11
|
nfcxfr |
|- F/_ k S |
13 |
|
nfcv |
|- F/_ k x |
14 |
12 13
|
nffv |
|- F/_ k ( S ` x ) |
15 |
|
nfcv |
|- F/_ k (/) |
16 |
14 15
|
nfne |
|- F/ k ( S ` x ) =/= (/) |
17 |
10 16
|
nfan |
|- F/ k ( P e. x /\ ( S ` x ) =/= (/) ) |
18 |
|
nfv |
|- F/ x ( P e. k /\ ( S ` k ) =/= (/) ) |
19 |
|
eleq2w |
|- ( x = k -> ( P e. x <-> P e. k ) ) |
20 |
|
fveq2 |
|- ( x = k -> ( S ` x ) = ( S ` k ) ) |
21 |
20
|
neeq1d |
|- ( x = k -> ( ( S ` x ) =/= (/) <-> ( S ` k ) =/= (/) ) ) |
22 |
19 21
|
anbi12d |
|- ( x = k -> ( ( P e. x /\ ( S ` x ) =/= (/) ) <-> ( P e. k /\ ( S ` k ) =/= (/) ) ) ) |
23 |
17 18 22
|
cbvrexw |
|- ( E. x e. J ( P e. x /\ ( S ` x ) =/= (/) ) <-> E. k e. J ( P e. k /\ ( S ` k ) =/= (/) ) ) |
24 |
9 23
|
sylibr |
|- ( ( F e. ( C CovMap J ) /\ P e. X ) -> E. x e. J ( P e. x /\ ( S ` x ) =/= (/) ) ) |