Step |
Hyp |
Ref |
Expression |
1 |
|
cvmcov.1 |
⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
2 |
|
cvmseu.1 |
⊢ 𝐵 = ∪ 𝐶 |
3 |
|
simpr2 |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑈 ) ) → 𝐴 ∈ 𝐵 ) |
4 |
|
simpr3 |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑈 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝑈 ) |
5 |
|
cvmcn |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑈 ) ) → 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) |
7 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
8 |
2 7
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) → 𝐹 : 𝐵 ⟶ ∪ 𝐽 ) |
9 |
|
ffn |
⊢ ( 𝐹 : 𝐵 ⟶ ∪ 𝐽 → 𝐹 Fn 𝐵 ) |
10 |
|
elpreima |
⊢ ( 𝐹 Fn 𝐵 → ( 𝐴 ∈ ( ◡ 𝐹 “ 𝑈 ) ↔ ( 𝐴 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑈 ) ) ) |
11 |
6 8 9 10
|
4syl |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑈 ) ) → ( 𝐴 ∈ ( ◡ 𝐹 “ 𝑈 ) ↔ ( 𝐴 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑈 ) ) ) |
12 |
3 4 11
|
mpbir2and |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑈 ) ) → 𝐴 ∈ ( ◡ 𝐹 “ 𝑈 ) ) |
13 |
|
simpr1 |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑈 ) ) → 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ) |
14 |
1
|
cvmsuni |
⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) → ∪ 𝑇 = ( ◡ 𝐹 “ 𝑈 ) ) |
15 |
13 14
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑈 ) ) → ∪ 𝑇 = ( ◡ 𝐹 “ 𝑈 ) ) |
16 |
12 15
|
eleqtrrd |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑈 ) ) → 𝐴 ∈ ∪ 𝑇 ) |
17 |
|
eluni2 |
⊢ ( 𝐴 ∈ ∪ 𝑇 ↔ ∃ 𝑥 ∈ 𝑇 𝐴 ∈ 𝑥 ) |
18 |
16 17
|
sylib |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑈 ) ) → ∃ 𝑥 ∈ 𝑇 𝐴 ∈ 𝑥 ) |
19 |
|
inelcm |
⊢ ( ( 𝐴 ∈ 𝑥 ∧ 𝐴 ∈ 𝑧 ) → ( 𝑥 ∩ 𝑧 ) ≠ ∅ ) |
20 |
1
|
cvmsdisj |
⊢ ( ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝑥 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) → ( 𝑥 = 𝑧 ∨ ( 𝑥 ∩ 𝑧 ) = ∅ ) ) |
21 |
20
|
3expb |
⊢ ( ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝑥 = 𝑧 ∨ ( 𝑥 ∩ 𝑧 ) = ∅ ) ) |
22 |
13 21
|
sylan |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑈 ) ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝑥 = 𝑧 ∨ ( 𝑥 ∩ 𝑧 ) = ∅ ) ) |
23 |
22
|
ord |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑈 ) ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ¬ 𝑥 = 𝑧 → ( 𝑥 ∩ 𝑧 ) = ∅ ) ) |
24 |
23
|
necon1ad |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑈 ) ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝑥 ∩ 𝑧 ) ≠ ∅ → 𝑥 = 𝑧 ) ) |
25 |
19 24
|
syl5 |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑈 ) ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝐴 ∈ 𝑥 ∧ 𝐴 ∈ 𝑧 ) → 𝑥 = 𝑧 ) ) |
26 |
25
|
ralrimivva |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑈 ) ) → ∀ 𝑥 ∈ 𝑇 ∀ 𝑧 ∈ 𝑇 ( ( 𝐴 ∈ 𝑥 ∧ 𝐴 ∈ 𝑧 ) → 𝑥 = 𝑧 ) ) |
27 |
|
eleq2w |
⊢ ( 𝑥 = 𝑧 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑧 ) ) |
28 |
27
|
reu4 |
⊢ ( ∃! 𝑥 ∈ 𝑇 𝐴 ∈ 𝑥 ↔ ( ∃ 𝑥 ∈ 𝑇 𝐴 ∈ 𝑥 ∧ ∀ 𝑥 ∈ 𝑇 ∀ 𝑧 ∈ 𝑇 ( ( 𝐴 ∈ 𝑥 ∧ 𝐴 ∈ 𝑧 ) → 𝑥 = 𝑧 ) ) ) |
29 |
18 26 28
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑈 ) ) → ∃! 𝑥 ∈ 𝑇 𝐴 ∈ 𝑥 ) |