Metamath Proof Explorer


Theorem cvmseu

Description: Every element in U. T is a member of a unique element of T . (Contributed by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypotheses cvmcov.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
cvmseu.1 𝐵 = 𝐶
Assertion cvmseu ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝐵 ∧ ( 𝐹𝐴 ) ∈ 𝑈 ) ) → ∃! 𝑥𝑇 𝐴𝑥 )

Proof

Step Hyp Ref Expression
1 cvmcov.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
2 cvmseu.1 𝐵 = 𝐶
3 simpr2 ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝐵 ∧ ( 𝐹𝐴 ) ∈ 𝑈 ) ) → 𝐴𝐵 )
4 simpr3 ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝐵 ∧ ( 𝐹𝐴 ) ∈ 𝑈 ) ) → ( 𝐹𝐴 ) ∈ 𝑈 )
5 cvmcn ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐹 ∈ ( 𝐶 Cn 𝐽 ) )
6 5 adantr ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝐵 ∧ ( 𝐹𝐴 ) ∈ 𝑈 ) ) → 𝐹 ∈ ( 𝐶 Cn 𝐽 ) )
7 eqid 𝐽 = 𝐽
8 2 7 cnf ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) → 𝐹 : 𝐵 𝐽 )
9 ffn ( 𝐹 : 𝐵 𝐽𝐹 Fn 𝐵 )
10 elpreima ( 𝐹 Fn 𝐵 → ( 𝐴 ∈ ( 𝐹𝑈 ) ↔ ( 𝐴𝐵 ∧ ( 𝐹𝐴 ) ∈ 𝑈 ) ) )
11 6 8 9 10 4syl ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝐵 ∧ ( 𝐹𝐴 ) ∈ 𝑈 ) ) → ( 𝐴 ∈ ( 𝐹𝑈 ) ↔ ( 𝐴𝐵 ∧ ( 𝐹𝐴 ) ∈ 𝑈 ) ) )
12 3 4 11 mpbir2and ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝐵 ∧ ( 𝐹𝐴 ) ∈ 𝑈 ) ) → 𝐴 ∈ ( 𝐹𝑈 ) )
13 simpr1 ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝐵 ∧ ( 𝐹𝐴 ) ∈ 𝑈 ) ) → 𝑇 ∈ ( 𝑆𝑈 ) )
14 1 cvmsuni ( 𝑇 ∈ ( 𝑆𝑈 ) → 𝑇 = ( 𝐹𝑈 ) )
15 13 14 syl ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝐵 ∧ ( 𝐹𝐴 ) ∈ 𝑈 ) ) → 𝑇 = ( 𝐹𝑈 ) )
16 12 15 eleqtrrd ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝐵 ∧ ( 𝐹𝐴 ) ∈ 𝑈 ) ) → 𝐴 𝑇 )
17 eluni2 ( 𝐴 𝑇 ↔ ∃ 𝑥𝑇 𝐴𝑥 )
18 16 17 sylib ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝐵 ∧ ( 𝐹𝐴 ) ∈ 𝑈 ) ) → ∃ 𝑥𝑇 𝐴𝑥 )
19 inelcm ( ( 𝐴𝑥𝐴𝑧 ) → ( 𝑥𝑧 ) ≠ ∅ )
20 1 cvmsdisj ( ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝑥𝑇𝑧𝑇 ) → ( 𝑥 = 𝑧 ∨ ( 𝑥𝑧 ) = ∅ ) )
21 20 3expb ( ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ ( 𝑥𝑇𝑧𝑇 ) ) → ( 𝑥 = 𝑧 ∨ ( 𝑥𝑧 ) = ∅ ) )
22 13 21 sylan ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝐵 ∧ ( 𝐹𝐴 ) ∈ 𝑈 ) ) ∧ ( 𝑥𝑇𝑧𝑇 ) ) → ( 𝑥 = 𝑧 ∨ ( 𝑥𝑧 ) = ∅ ) )
23 22 ord ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝐵 ∧ ( 𝐹𝐴 ) ∈ 𝑈 ) ) ∧ ( 𝑥𝑇𝑧𝑇 ) ) → ( ¬ 𝑥 = 𝑧 → ( 𝑥𝑧 ) = ∅ ) )
24 23 necon1ad ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝐵 ∧ ( 𝐹𝐴 ) ∈ 𝑈 ) ) ∧ ( 𝑥𝑇𝑧𝑇 ) ) → ( ( 𝑥𝑧 ) ≠ ∅ → 𝑥 = 𝑧 ) )
25 19 24 syl5 ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝐵 ∧ ( 𝐹𝐴 ) ∈ 𝑈 ) ) ∧ ( 𝑥𝑇𝑧𝑇 ) ) → ( ( 𝐴𝑥𝐴𝑧 ) → 𝑥 = 𝑧 ) )
26 25 ralrimivva ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝐵 ∧ ( 𝐹𝐴 ) ∈ 𝑈 ) ) → ∀ 𝑥𝑇𝑧𝑇 ( ( 𝐴𝑥𝐴𝑧 ) → 𝑥 = 𝑧 ) )
27 eleq2w ( 𝑥 = 𝑧 → ( 𝐴𝑥𝐴𝑧 ) )
28 27 reu4 ( ∃! 𝑥𝑇 𝐴𝑥 ↔ ( ∃ 𝑥𝑇 𝐴𝑥 ∧ ∀ 𝑥𝑇𝑧𝑇 ( ( 𝐴𝑥𝐴𝑧 ) → 𝑥 = 𝑧 ) ) )
29 18 26 28 sylanbrc ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝐵 ∧ ( 𝐹𝐴 ) ∈ 𝑈 ) ) → ∃! 𝑥𝑇 𝐴𝑥 )