Step |
Hyp |
Ref |
Expression |
1 |
|
cvmcov.1 |
⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
2 |
|
cvmseu.1 |
⊢ 𝐵 = ∪ 𝐶 |
3 |
|
cvmsiota.2 |
⊢ 𝑊 = ( ℩ 𝑥 ∈ 𝑇 𝐴 ∈ 𝑥 ) |
4 |
1 2
|
cvmseu |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑈 ) ) → ∃! 𝑥 ∈ 𝑇 𝐴 ∈ 𝑥 ) |
5 |
|
riotacl2 |
⊢ ( ∃! 𝑥 ∈ 𝑇 𝐴 ∈ 𝑥 → ( ℩ 𝑥 ∈ 𝑇 𝐴 ∈ 𝑥 ) ∈ { 𝑥 ∈ 𝑇 ∣ 𝐴 ∈ 𝑥 } ) |
6 |
4 5
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑈 ) ) → ( ℩ 𝑥 ∈ 𝑇 𝐴 ∈ 𝑥 ) ∈ { 𝑥 ∈ 𝑇 ∣ 𝐴 ∈ 𝑥 } ) |
7 |
3 6
|
eqeltrid |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑈 ) ) → 𝑊 ∈ { 𝑥 ∈ 𝑇 ∣ 𝐴 ∈ 𝑥 } ) |
8 |
|
eleq2 |
⊢ ( 𝑣 = 𝑊 → ( 𝐴 ∈ 𝑣 ↔ 𝐴 ∈ 𝑊 ) ) |
9 |
|
eleq2 |
⊢ ( 𝑥 = 𝑣 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑣 ) ) |
10 |
9
|
cbvrabv |
⊢ { 𝑥 ∈ 𝑇 ∣ 𝐴 ∈ 𝑥 } = { 𝑣 ∈ 𝑇 ∣ 𝐴 ∈ 𝑣 } |
11 |
8 10
|
elrab2 |
⊢ ( 𝑊 ∈ { 𝑥 ∈ 𝑇 ∣ 𝐴 ∈ 𝑥 } ↔ ( 𝑊 ∈ 𝑇 ∧ 𝐴 ∈ 𝑊 ) ) |
12 |
7 11
|
sylib |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆 ‘ 𝑈 ) ∧ 𝐴 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑈 ) ) → ( 𝑊 ∈ 𝑇 ∧ 𝐴 ∈ 𝑊 ) ) |