Metamath Proof Explorer


Theorem cvmsiota

Description: Identify the unique element of T containing A . (Contributed by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypotheses cvmcov.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
cvmseu.1 𝐵 = 𝐶
cvmsiota.2 𝑊 = ( 𝑥𝑇 𝐴𝑥 )
Assertion cvmsiota ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝐵 ∧ ( 𝐹𝐴 ) ∈ 𝑈 ) ) → ( 𝑊𝑇𝐴𝑊 ) )

Proof

Step Hyp Ref Expression
1 cvmcov.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
2 cvmseu.1 𝐵 = 𝐶
3 cvmsiota.2 𝑊 = ( 𝑥𝑇 𝐴𝑥 )
4 1 2 cvmseu ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝐵 ∧ ( 𝐹𝐴 ) ∈ 𝑈 ) ) → ∃! 𝑥𝑇 𝐴𝑥 )
5 riotacl2 ( ∃! 𝑥𝑇 𝐴𝑥 → ( 𝑥𝑇 𝐴𝑥 ) ∈ { 𝑥𝑇𝐴𝑥 } )
6 4 5 syl ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝐵 ∧ ( 𝐹𝐴 ) ∈ 𝑈 ) ) → ( 𝑥𝑇 𝐴𝑥 ) ∈ { 𝑥𝑇𝐴𝑥 } )
7 3 6 eqeltrid ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝐵 ∧ ( 𝐹𝐴 ) ∈ 𝑈 ) ) → 𝑊 ∈ { 𝑥𝑇𝐴𝑥 } )
8 eleq2 ( 𝑣 = 𝑊 → ( 𝐴𝑣𝐴𝑊 ) )
9 eleq2 ( 𝑥 = 𝑣 → ( 𝐴𝑥𝐴𝑣 ) )
10 9 cbvrabv { 𝑥𝑇𝐴𝑥 } = { 𝑣𝑇𝐴𝑣 }
11 8 10 elrab2 ( 𝑊 ∈ { 𝑥𝑇𝐴𝑥 } ↔ ( 𝑊𝑇𝐴𝑊 ) )
12 7 11 sylib ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆𝑈 ) ∧ 𝐴𝐵 ∧ ( 𝐹𝐴 ) ∈ 𝑈 ) ) → ( 𝑊𝑇𝐴𝑊 ) )