| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmcov.1 | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 2 |  | cvmseu.1 | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 3 |  | cvmsiota.2 | ⊢ 𝑊  =  ( ℩ 𝑥  ∈  𝑇 𝐴  ∈  𝑥 ) | 
						
							| 4 | 1 2 | cvmseu | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝐵  ∧  ( 𝐹 ‘ 𝐴 )  ∈  𝑈 ) )  →  ∃! 𝑥  ∈  𝑇 𝐴  ∈  𝑥 ) | 
						
							| 5 |  | riotacl2 | ⊢ ( ∃! 𝑥  ∈  𝑇 𝐴  ∈  𝑥  →  ( ℩ 𝑥  ∈  𝑇 𝐴  ∈  𝑥 )  ∈  { 𝑥  ∈  𝑇  ∣  𝐴  ∈  𝑥 } ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝐵  ∧  ( 𝐹 ‘ 𝐴 )  ∈  𝑈 ) )  →  ( ℩ 𝑥  ∈  𝑇 𝐴  ∈  𝑥 )  ∈  { 𝑥  ∈  𝑇  ∣  𝐴  ∈  𝑥 } ) | 
						
							| 7 | 3 6 | eqeltrid | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝐵  ∧  ( 𝐹 ‘ 𝐴 )  ∈  𝑈 ) )  →  𝑊  ∈  { 𝑥  ∈  𝑇  ∣  𝐴  ∈  𝑥 } ) | 
						
							| 8 |  | eleq2 | ⊢ ( 𝑣  =  𝑊  →  ( 𝐴  ∈  𝑣  ↔  𝐴  ∈  𝑊 ) ) | 
						
							| 9 |  | eleq2 | ⊢ ( 𝑥  =  𝑣  →  ( 𝐴  ∈  𝑥  ↔  𝐴  ∈  𝑣 ) ) | 
						
							| 10 | 9 | cbvrabv | ⊢ { 𝑥  ∈  𝑇  ∣  𝐴  ∈  𝑥 }  =  { 𝑣  ∈  𝑇  ∣  𝐴  ∈  𝑣 } | 
						
							| 11 | 8 10 | elrab2 | ⊢ ( 𝑊  ∈  { 𝑥  ∈  𝑇  ∣  𝐴  ∈  𝑥 }  ↔  ( 𝑊  ∈  𝑇  ∧  𝐴  ∈  𝑊 ) ) | 
						
							| 12 | 7 11 | sylib | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  ( 𝑇  ∈  ( 𝑆 ‘ 𝑈 )  ∧  𝐴  ∈  𝐵  ∧  ( 𝐹 ‘ 𝐴 )  ∈  𝑈 ) )  →  ( 𝑊  ∈  𝑇  ∧  𝐴  ∈  𝑊 ) ) |