Step |
Hyp |
Ref |
Expression |
1 |
|
cvmcov.1 |
⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
2 |
|
cvmseu.1 |
⊢ 𝐵 = ∪ 𝐶 |
3 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
4 |
|
cvmcn |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) → 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) |
6 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
7 |
2 6
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) → 𝐹 : 𝐵 ⟶ ∪ 𝐽 ) |
8 |
5 7
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) → 𝐹 : 𝐵 ⟶ ∪ 𝐽 ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → 𝐹 : 𝐵 ⟶ ∪ 𝐽 ) |
10 |
|
elssuni |
⊢ ( 𝐴 ∈ 𝐶 → 𝐴 ⊆ ∪ 𝐶 ) |
11 |
10 2
|
sseqtrrdi |
⊢ ( 𝐴 ∈ 𝐶 → 𝐴 ⊆ 𝐵 ) |
12 |
11
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) → 𝐴 ⊆ 𝐵 ) |
13 |
12
|
sselda |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ 𝐵 ) |
14 |
9 13
|
ffvelrnd |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ ∪ 𝐽 ) |
15 |
1 6
|
cvmcov |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ ∪ 𝐽 ) → ∃ 𝑡 ∈ 𝐽 ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ ( 𝑆 ‘ 𝑡 ) ≠ ∅ ) ) |
16 |
3 14 15
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ∃ 𝑡 ∈ 𝐽 ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ ( 𝑆 ‘ 𝑡 ) ≠ ∅ ) ) |
17 |
|
n0 |
⊢ ( ( 𝑆 ‘ 𝑡 ) ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ) |
18 |
|
inss2 |
⊢ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ⊆ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) |
19 |
|
resima2 |
⊢ ( ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ⊆ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) → ( ( 𝐹 ↾ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) = ( 𝐹 “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) ) |
20 |
18 19
|
ax-mp |
⊢ ( ( 𝐹 ↾ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) = ( 𝐹 “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) |
21 |
|
simprr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ) ) → 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ) |
22 |
3
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ) ) → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
23 |
13
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ) ) → 𝑧 ∈ 𝐵 ) |
24 |
|
simprl |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ) |
25 |
|
eqid |
⊢ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) = ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) |
26 |
1 2 25
|
cvmsiota |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ∧ 𝑧 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ) ) → ( ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ∈ 𝑤 ∧ 𝑧 ∈ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) |
27 |
22 21 23 24 26
|
syl13anc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ) ) → ( ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ∈ 𝑤 ∧ 𝑧 ∈ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) |
28 |
27
|
simpld |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ) ) → ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ∈ 𝑤 ) |
29 |
1
|
cvmshmeo |
⊢ ( ( 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ∧ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ∈ 𝑤 ) → ( 𝐹 ↾ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ∈ ( ( 𝐶 ↾t ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) Homeo ( 𝐽 ↾t 𝑡 ) ) ) |
30 |
21 28 29
|
syl2anc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ) ) → ( 𝐹 ↾ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ∈ ( ( 𝐶 ↾t ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) Homeo ( 𝐽 ↾t 𝑡 ) ) ) |
31 |
|
cvmtop1 |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐶 ∈ Top ) |
32 |
22 31
|
syl |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ) ) → 𝐶 ∈ Top ) |
33 |
|
simpllr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ) ) → 𝐴 ∈ 𝐶 ) |
34 |
|
elrestr |
⊢ ( ( 𝐶 ∈ Top ∧ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ∈ 𝑤 ∧ 𝐴 ∈ 𝐶 ) → ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ∈ ( 𝐶 ↾t ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) |
35 |
32 28 33 34
|
syl3anc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ) ) → ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ∈ ( 𝐶 ↾t ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) |
36 |
|
hmeoima |
⊢ ( ( ( 𝐹 ↾ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ∈ ( ( 𝐶 ↾t ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) Homeo ( 𝐽 ↾t 𝑡 ) ) ∧ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ∈ ( 𝐶 ↾t ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) → ( ( 𝐹 ↾ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) ∈ ( 𝐽 ↾t 𝑡 ) ) |
37 |
30 35 36
|
syl2anc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ) ) → ( ( 𝐹 ↾ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) ∈ ( 𝐽 ↾t 𝑡 ) ) |
38 |
20 37
|
eqeltrrid |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ) ) → ( 𝐹 “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) ∈ ( 𝐽 ↾t 𝑡 ) ) |
39 |
|
cvmtop2 |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐽 ∈ Top ) |
40 |
39
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) → 𝐽 ∈ Top ) |
41 |
40
|
ad2antrr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ) ) → 𝐽 ∈ Top ) |
42 |
1
|
cvmsrcl |
⊢ ( 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) → 𝑡 ∈ 𝐽 ) |
43 |
42
|
ad2antll |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ) ) → 𝑡 ∈ 𝐽 ) |
44 |
|
restopn2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑡 ∈ 𝐽 ) → ( ( 𝐹 “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) ∈ ( 𝐽 ↾t 𝑡 ) ↔ ( ( 𝐹 “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) ∈ 𝐽 ∧ ( 𝐹 “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) ⊆ 𝑡 ) ) ) |
45 |
41 43 44
|
syl2anc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ) ) → ( ( 𝐹 “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) ∈ ( 𝐽 ↾t 𝑡 ) ↔ ( ( 𝐹 “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) ∈ 𝐽 ∧ ( 𝐹 “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) ⊆ 𝑡 ) ) ) |
46 |
38 45
|
mpbid |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ) ) → ( ( 𝐹 “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) ∈ 𝐽 ∧ ( 𝐹 “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) ⊆ 𝑡 ) ) |
47 |
46
|
simpld |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ) ) → ( 𝐹 “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) ∈ 𝐽 ) |
48 |
8
|
ffnd |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) → 𝐹 Fn 𝐵 ) |
49 |
48
|
ad2antrr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ) ) → 𝐹 Fn 𝐵 ) |
50 |
|
inss1 |
⊢ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ⊆ 𝐴 |
51 |
33 11
|
syl |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ) ) → 𝐴 ⊆ 𝐵 ) |
52 |
50 51
|
sstrid |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ) ) → ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ⊆ 𝐵 ) |
53 |
|
simplr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ) ) → 𝑧 ∈ 𝐴 ) |
54 |
27
|
simprd |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ) ) → 𝑧 ∈ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) |
55 |
53 54
|
elind |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ) ) → 𝑧 ∈ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) |
56 |
|
fnfvima |
⊢ ( ( 𝐹 Fn 𝐵 ∧ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ⊆ 𝐵 ∧ 𝑧 ∈ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) ) |
57 |
49 52 55 56
|
syl3anc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) ) |
58 |
|
imass2 |
⊢ ( ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ⊆ 𝐴 → ( 𝐹 “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) ⊆ ( 𝐹 “ 𝐴 ) ) |
59 |
50 58
|
mp1i |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ) ) → ( 𝐹 “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) ⊆ ( 𝐹 “ 𝐴 ) ) |
60 |
|
eleq2 |
⊢ ( 𝑦 = ( 𝐹 “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑦 ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) ) ) |
61 |
|
sseq1 |
⊢ ( 𝑦 = ( 𝐹 “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) → ( 𝑦 ⊆ ( 𝐹 “ 𝐴 ) ↔ ( 𝐹 “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) ⊆ ( 𝐹 “ 𝐴 ) ) ) |
62 |
60 61
|
anbi12d |
⊢ ( 𝑦 = ( 𝐹 “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) → ( ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝐹 “ 𝐴 ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) ∧ ( 𝐹 “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) ⊆ ( 𝐹 “ 𝐴 ) ) ) ) |
63 |
62
|
rspcev |
⊢ ( ( ( 𝐹 “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) ∈ 𝐽 ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) ∧ ( 𝐹 “ ( 𝐴 ∩ ( ℩ 𝑥 ∈ 𝑤 𝑧 ∈ 𝑥 ) ) ) ⊆ ( 𝐹 “ 𝐴 ) ) ) → ∃ 𝑦 ∈ 𝐽 ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝐹 “ 𝐴 ) ) ) |
64 |
47 57 59 63
|
syl12anc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) ) ) → ∃ 𝑦 ∈ 𝐽 ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝐹 “ 𝐴 ) ) ) |
65 |
64
|
expr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ) → ( 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) → ∃ 𝑦 ∈ 𝐽 ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝐹 “ 𝐴 ) ) ) ) |
66 |
65
|
exlimdv |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ) → ( ∃ 𝑤 𝑤 ∈ ( 𝑆 ‘ 𝑡 ) → ∃ 𝑦 ∈ 𝐽 ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝐹 “ 𝐴 ) ) ) ) |
67 |
17 66
|
syl5bi |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ) → ( ( 𝑆 ‘ 𝑡 ) ≠ ∅ → ∃ 𝑦 ∈ 𝐽 ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝐹 “ 𝐴 ) ) ) ) |
68 |
67
|
expimpd |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ ( 𝑆 ‘ 𝑡 ) ≠ ∅ ) → ∃ 𝑦 ∈ 𝐽 ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝐹 “ 𝐴 ) ) ) ) |
69 |
68
|
rexlimdvw |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ∃ 𝑡 ∈ 𝐽 ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑡 ∧ ( 𝑆 ‘ 𝑡 ) ≠ ∅ ) → ∃ 𝑦 ∈ 𝐽 ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝐹 “ 𝐴 ) ) ) ) |
70 |
16 69
|
mpd |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐽 ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝐹 “ 𝐴 ) ) ) |
71 |
70
|
ralrimiva |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) → ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝐽 ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝐹 “ 𝐴 ) ) ) |
72 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( 𝑥 ∈ 𝑦 ↔ ( 𝐹 ‘ 𝑧 ) ∈ 𝑦 ) ) |
73 |
72
|
anbi1d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝐹 “ 𝐴 ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝐹 “ 𝐴 ) ) ) ) |
74 |
73
|
rexbidv |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝐹 “ 𝐴 ) ) ↔ ∃ 𝑦 ∈ 𝐽 ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝐹 “ 𝐴 ) ) ) ) |
75 |
74
|
ralima |
⊢ ( ( 𝐹 Fn 𝐵 ∧ 𝐴 ⊆ 𝐵 ) → ( ∀ 𝑥 ∈ ( 𝐹 “ 𝐴 ) ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝐹 “ 𝐴 ) ) ↔ ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝐽 ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝐹 “ 𝐴 ) ) ) ) |
76 |
48 12 75
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) → ( ∀ 𝑥 ∈ ( 𝐹 “ 𝐴 ) ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝐹 “ 𝐴 ) ) ↔ ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝐽 ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝐹 “ 𝐴 ) ) ) ) |
77 |
71 76
|
mpbird |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) → ∀ 𝑥 ∈ ( 𝐹 “ 𝐴 ) ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝐹 “ 𝐴 ) ) ) |
78 |
|
eltop2 |
⊢ ( 𝐽 ∈ Top → ( ( 𝐹 “ 𝐴 ) ∈ 𝐽 ↔ ∀ 𝑥 ∈ ( 𝐹 “ 𝐴 ) ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝐹 “ 𝐴 ) ) ) ) |
79 |
40 78
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) → ( ( 𝐹 “ 𝐴 ) ∈ 𝐽 ↔ ∀ 𝑥 ∈ ( 𝐹 “ 𝐴 ) ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝐹 “ 𝐴 ) ) ) ) |
80 |
77 79
|
mpbird |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐴 ∈ 𝐶 ) → ( 𝐹 “ 𝐴 ) ∈ 𝐽 ) |