| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmcov.1 | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 2 |  | cvmseu.1 | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 3 |  | simpll | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 4 |  | cvmcn | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐹  ∈  ( 𝐶  Cn  𝐽 ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  →  𝐹  ∈  ( 𝐶  Cn  𝐽 ) ) | 
						
							| 6 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 7 | 2 6 | cnf | ⊢ ( 𝐹  ∈  ( 𝐶  Cn  𝐽 )  →  𝐹 : 𝐵 ⟶ ∪  𝐽 ) | 
						
							| 8 | 5 7 | syl | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  →  𝐹 : 𝐵 ⟶ ∪  𝐽 ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  →  𝐹 : 𝐵 ⟶ ∪  𝐽 ) | 
						
							| 10 |  | elssuni | ⊢ ( 𝐴  ∈  𝐶  →  𝐴  ⊆  ∪  𝐶 ) | 
						
							| 11 | 10 2 | sseqtrrdi | ⊢ ( 𝐴  ∈  𝐶  →  𝐴  ⊆  𝐵 ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  →  𝐴  ⊆  𝐵 ) | 
						
							| 13 | 12 | sselda | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  →  𝑧  ∈  𝐵 ) | 
						
							| 14 | 9 13 | ffvelcdmd | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑧 )  ∈  ∪  𝐽 ) | 
						
							| 15 | 1 6 | cvmcov | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  ( 𝐹 ‘ 𝑧 )  ∈  ∪  𝐽 )  →  ∃ 𝑡  ∈  𝐽 ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  ( 𝑆 ‘ 𝑡 )  ≠  ∅ ) ) | 
						
							| 16 | 3 14 15 | syl2anc | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  →  ∃ 𝑡  ∈  𝐽 ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  ( 𝑆 ‘ 𝑡 )  ≠  ∅ ) ) | 
						
							| 17 |  | n0 | ⊢ ( ( 𝑆 ‘ 𝑡 )  ≠  ∅  ↔  ∃ 𝑤 𝑤  ∈  ( 𝑆 ‘ 𝑡 ) ) | 
						
							| 18 |  | inss2 | ⊢ ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) )  ⊆  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) | 
						
							| 19 |  | resima2 | ⊢ ( ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) )  ⊆  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 )  →  ( ( 𝐹  ↾  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) )  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) )  =  ( 𝐹  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) ) ) | 
						
							| 20 | 18 19 | ax-mp | ⊢ ( ( 𝐹  ↾  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) )  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) )  =  ( 𝐹  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) ) | 
						
							| 21 |  | simprr | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  𝑤  ∈  ( 𝑆 ‘ 𝑡 ) ) )  →  𝑤  ∈  ( 𝑆 ‘ 𝑡 ) ) | 
						
							| 22 | 3 | adantr | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  𝑤  ∈  ( 𝑆 ‘ 𝑡 ) ) )  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 23 | 13 | adantr | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  𝑤  ∈  ( 𝑆 ‘ 𝑡 ) ) )  →  𝑧  ∈  𝐵 ) | 
						
							| 24 |  | simprl | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  𝑤  ∈  ( 𝑆 ‘ 𝑡 ) ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  𝑡 ) | 
						
							| 25 |  | eqid | ⊢ ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 )  =  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) | 
						
							| 26 | 1 2 25 | cvmsiota | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  ( 𝑤  ∈  ( 𝑆 ‘ 𝑡 )  ∧  𝑧  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑧 )  ∈  𝑡 ) )  →  ( ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 )  ∈  𝑤  ∧  𝑧  ∈  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) ) | 
						
							| 27 | 22 21 23 24 26 | syl13anc | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  𝑤  ∈  ( 𝑆 ‘ 𝑡 ) ) )  →  ( ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 )  ∈  𝑤  ∧  𝑧  ∈  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) ) | 
						
							| 28 | 27 | simpld | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  𝑤  ∈  ( 𝑆 ‘ 𝑡 ) ) )  →  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 )  ∈  𝑤 ) | 
						
							| 29 | 1 | cvmshmeo | ⊢ ( ( 𝑤  ∈  ( 𝑆 ‘ 𝑡 )  ∧  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 )  ∈  𝑤 )  →  ( 𝐹  ↾  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) )  ∈  ( ( 𝐶  ↾t  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) Homeo ( 𝐽  ↾t  𝑡 ) ) ) | 
						
							| 30 | 21 28 29 | syl2anc | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  𝑤  ∈  ( 𝑆 ‘ 𝑡 ) ) )  →  ( 𝐹  ↾  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) )  ∈  ( ( 𝐶  ↾t  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) Homeo ( 𝐽  ↾t  𝑡 ) ) ) | 
						
							| 31 |  | cvmtop1 | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐶  ∈  Top ) | 
						
							| 32 | 22 31 | syl | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  𝑤  ∈  ( 𝑆 ‘ 𝑡 ) ) )  →  𝐶  ∈  Top ) | 
						
							| 33 |  | simpllr | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  𝑤  ∈  ( 𝑆 ‘ 𝑡 ) ) )  →  𝐴  ∈  𝐶 ) | 
						
							| 34 |  | elrestr | ⊢ ( ( 𝐶  ∈  Top  ∧  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 )  ∈  𝑤  ∧  𝐴  ∈  𝐶 )  →  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) )  ∈  ( 𝐶  ↾t  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) ) | 
						
							| 35 | 32 28 33 34 | syl3anc | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  𝑤  ∈  ( 𝑆 ‘ 𝑡 ) ) )  →  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) )  ∈  ( 𝐶  ↾t  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) ) | 
						
							| 36 |  | hmeoima | ⊢ ( ( ( 𝐹  ↾  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) )  ∈  ( ( 𝐶  ↾t  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) Homeo ( 𝐽  ↾t  𝑡 ) )  ∧  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) )  ∈  ( 𝐶  ↾t  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) )  →  ( ( 𝐹  ↾  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) )  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) )  ∈  ( 𝐽  ↾t  𝑡 ) ) | 
						
							| 37 | 30 35 36 | syl2anc | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  𝑤  ∈  ( 𝑆 ‘ 𝑡 ) ) )  →  ( ( 𝐹  ↾  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) )  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) )  ∈  ( 𝐽  ↾t  𝑡 ) ) | 
						
							| 38 | 20 37 | eqeltrrid | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  𝑤  ∈  ( 𝑆 ‘ 𝑡 ) ) )  →  ( 𝐹  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) )  ∈  ( 𝐽  ↾t  𝑡 ) ) | 
						
							| 39 |  | cvmtop2 | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐽  ∈  Top ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  →  𝐽  ∈  Top ) | 
						
							| 41 | 40 | ad2antrr | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  𝑤  ∈  ( 𝑆 ‘ 𝑡 ) ) )  →  𝐽  ∈  Top ) | 
						
							| 42 | 1 | cvmsrcl | ⊢ ( 𝑤  ∈  ( 𝑆 ‘ 𝑡 )  →  𝑡  ∈  𝐽 ) | 
						
							| 43 | 42 | ad2antll | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  𝑤  ∈  ( 𝑆 ‘ 𝑡 ) ) )  →  𝑡  ∈  𝐽 ) | 
						
							| 44 |  | restopn2 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑡  ∈  𝐽 )  →  ( ( 𝐹  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) )  ∈  ( 𝐽  ↾t  𝑡 )  ↔  ( ( 𝐹  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) )  ∈  𝐽  ∧  ( 𝐹  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) )  ⊆  𝑡 ) ) ) | 
						
							| 45 | 41 43 44 | syl2anc | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  𝑤  ∈  ( 𝑆 ‘ 𝑡 ) ) )  →  ( ( 𝐹  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) )  ∈  ( 𝐽  ↾t  𝑡 )  ↔  ( ( 𝐹  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) )  ∈  𝐽  ∧  ( 𝐹  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) )  ⊆  𝑡 ) ) ) | 
						
							| 46 | 38 45 | mpbid | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  𝑤  ∈  ( 𝑆 ‘ 𝑡 ) ) )  →  ( ( 𝐹  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) )  ∈  𝐽  ∧  ( 𝐹  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) )  ⊆  𝑡 ) ) | 
						
							| 47 | 46 | simpld | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  𝑤  ∈  ( 𝑆 ‘ 𝑡 ) ) )  →  ( 𝐹  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) )  ∈  𝐽 ) | 
						
							| 48 | 8 | ffnd | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  →  𝐹  Fn  𝐵 ) | 
						
							| 49 | 48 | ad2antrr | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  𝑤  ∈  ( 𝑆 ‘ 𝑡 ) ) )  →  𝐹  Fn  𝐵 ) | 
						
							| 50 |  | inss1 | ⊢ ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) )  ⊆  𝐴 | 
						
							| 51 | 33 11 | syl | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  𝑤  ∈  ( 𝑆 ‘ 𝑡 ) ) )  →  𝐴  ⊆  𝐵 ) | 
						
							| 52 | 50 51 | sstrid | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  𝑤  ∈  ( 𝑆 ‘ 𝑡 ) ) )  →  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) )  ⊆  𝐵 ) | 
						
							| 53 |  | simplr | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  𝑤  ∈  ( 𝑆 ‘ 𝑡 ) ) )  →  𝑧  ∈  𝐴 ) | 
						
							| 54 | 27 | simprd | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  𝑤  ∈  ( 𝑆 ‘ 𝑡 ) ) )  →  𝑧  ∈  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) | 
						
							| 55 | 53 54 | elind | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  𝑤  ∈  ( 𝑆 ‘ 𝑡 ) ) )  →  𝑧  ∈  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) ) | 
						
							| 56 |  | fnfvima | ⊢ ( ( 𝐹  Fn  𝐵  ∧  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) )  ⊆  𝐵  ∧  𝑧  ∈  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐹  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) ) ) | 
						
							| 57 | 49 52 55 56 | syl3anc | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  𝑤  ∈  ( 𝑆 ‘ 𝑡 ) ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐹  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) ) ) | 
						
							| 58 |  | imass2 | ⊢ ( ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) )  ⊆  𝐴  →  ( 𝐹  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) )  ⊆  ( 𝐹  “  𝐴 ) ) | 
						
							| 59 | 50 58 | mp1i | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  𝑤  ∈  ( 𝑆 ‘ 𝑡 ) ) )  →  ( 𝐹  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) )  ⊆  ( 𝐹  “  𝐴 ) ) | 
						
							| 60 |  | eleq2 | ⊢ ( 𝑦  =  ( 𝐹  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) )  →  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑦  ↔  ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐹  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) ) ) ) | 
						
							| 61 |  | sseq1 | ⊢ ( 𝑦  =  ( 𝐹  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) )  →  ( 𝑦  ⊆  ( 𝐹  “  𝐴 )  ↔  ( 𝐹  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) )  ⊆  ( 𝐹  “  𝐴 ) ) ) | 
						
							| 62 | 60 61 | anbi12d | ⊢ ( 𝑦  =  ( 𝐹  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) )  →  ( ( ( 𝐹 ‘ 𝑧 )  ∈  𝑦  ∧  𝑦  ⊆  ( 𝐹  “  𝐴 ) )  ↔  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐹  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) )  ∧  ( 𝐹  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) )  ⊆  ( 𝐹  “  𝐴 ) ) ) ) | 
						
							| 63 | 62 | rspcev | ⊢ ( ( ( 𝐹  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) )  ∈  𝐽  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  ( 𝐹  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) )  ∧  ( 𝐹  “  ( 𝐴  ∩  ( ℩ 𝑥  ∈  𝑤 𝑧  ∈  𝑥 ) ) )  ⊆  ( 𝐹  “  𝐴 ) ) )  →  ∃ 𝑦  ∈  𝐽 ( ( 𝐹 ‘ 𝑧 )  ∈  𝑦  ∧  𝑦  ⊆  ( 𝐹  “  𝐴 ) ) ) | 
						
							| 64 | 47 57 59 63 | syl12anc | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  𝑤  ∈  ( 𝑆 ‘ 𝑡 ) ) )  →  ∃ 𝑦  ∈  𝐽 ( ( 𝐹 ‘ 𝑧 )  ∈  𝑦  ∧  𝑦  ⊆  ( 𝐹  “  𝐴 ) ) ) | 
						
							| 65 | 64 | expr | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑧 )  ∈  𝑡 )  →  ( 𝑤  ∈  ( 𝑆 ‘ 𝑡 )  →  ∃ 𝑦  ∈  𝐽 ( ( 𝐹 ‘ 𝑧 )  ∈  𝑦  ∧  𝑦  ⊆  ( 𝐹  “  𝐴 ) ) ) ) | 
						
							| 66 | 65 | exlimdv | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑧 )  ∈  𝑡 )  →  ( ∃ 𝑤 𝑤  ∈  ( 𝑆 ‘ 𝑡 )  →  ∃ 𝑦  ∈  𝐽 ( ( 𝐹 ‘ 𝑧 )  ∈  𝑦  ∧  𝑦  ⊆  ( 𝐹  “  𝐴 ) ) ) ) | 
						
							| 67 | 17 66 | biimtrid | ⊢ ( ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  ∧  ( 𝐹 ‘ 𝑧 )  ∈  𝑡 )  →  ( ( 𝑆 ‘ 𝑡 )  ≠  ∅  →  ∃ 𝑦  ∈  𝐽 ( ( 𝐹 ‘ 𝑧 )  ∈  𝑦  ∧  𝑦  ⊆  ( 𝐹  “  𝐴 ) ) ) ) | 
						
							| 68 | 67 | expimpd | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  →  ( ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  ( 𝑆 ‘ 𝑡 )  ≠  ∅ )  →  ∃ 𝑦  ∈  𝐽 ( ( 𝐹 ‘ 𝑧 )  ∈  𝑦  ∧  𝑦  ⊆  ( 𝐹  “  𝐴 ) ) ) ) | 
						
							| 69 | 68 | rexlimdvw | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  →  ( ∃ 𝑡  ∈  𝐽 ( ( 𝐹 ‘ 𝑧 )  ∈  𝑡  ∧  ( 𝑆 ‘ 𝑡 )  ≠  ∅ )  →  ∃ 𝑦  ∈  𝐽 ( ( 𝐹 ‘ 𝑧 )  ∈  𝑦  ∧  𝑦  ⊆  ( 𝐹  “  𝐴 ) ) ) ) | 
						
							| 70 | 16 69 | mpd | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  ∧  𝑧  ∈  𝐴 )  →  ∃ 𝑦  ∈  𝐽 ( ( 𝐹 ‘ 𝑧 )  ∈  𝑦  ∧  𝑦  ⊆  ( 𝐹  “  𝐴 ) ) ) | 
						
							| 71 | 70 | ralrimiva | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  →  ∀ 𝑧  ∈  𝐴 ∃ 𝑦  ∈  𝐽 ( ( 𝐹 ‘ 𝑧 )  ∈  𝑦  ∧  𝑦  ⊆  ( 𝐹  “  𝐴 ) ) ) | 
						
							| 72 |  | eleq1 | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑧 )  →  ( 𝑥  ∈  𝑦  ↔  ( 𝐹 ‘ 𝑧 )  ∈  𝑦 ) ) | 
						
							| 73 | 72 | anbi1d | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑧 )  →  ( ( 𝑥  ∈  𝑦  ∧  𝑦  ⊆  ( 𝐹  “  𝐴 ) )  ↔  ( ( 𝐹 ‘ 𝑧 )  ∈  𝑦  ∧  𝑦  ⊆  ( 𝐹  “  𝐴 ) ) ) ) | 
						
							| 74 | 73 | rexbidv | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑧 )  →  ( ∃ 𝑦  ∈  𝐽 ( 𝑥  ∈  𝑦  ∧  𝑦  ⊆  ( 𝐹  “  𝐴 ) )  ↔  ∃ 𝑦  ∈  𝐽 ( ( 𝐹 ‘ 𝑧 )  ∈  𝑦  ∧  𝑦  ⊆  ( 𝐹  “  𝐴 ) ) ) ) | 
						
							| 75 | 74 | ralima | ⊢ ( ( 𝐹  Fn  𝐵  ∧  𝐴  ⊆  𝐵 )  →  ( ∀ 𝑥  ∈  ( 𝐹  “  𝐴 ) ∃ 𝑦  ∈  𝐽 ( 𝑥  ∈  𝑦  ∧  𝑦  ⊆  ( 𝐹  “  𝐴 ) )  ↔  ∀ 𝑧  ∈  𝐴 ∃ 𝑦  ∈  𝐽 ( ( 𝐹 ‘ 𝑧 )  ∈  𝑦  ∧  𝑦  ⊆  ( 𝐹  “  𝐴 ) ) ) ) | 
						
							| 76 | 48 12 75 | syl2anc | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  →  ( ∀ 𝑥  ∈  ( 𝐹  “  𝐴 ) ∃ 𝑦  ∈  𝐽 ( 𝑥  ∈  𝑦  ∧  𝑦  ⊆  ( 𝐹  “  𝐴 ) )  ↔  ∀ 𝑧  ∈  𝐴 ∃ 𝑦  ∈  𝐽 ( ( 𝐹 ‘ 𝑧 )  ∈  𝑦  ∧  𝑦  ⊆  ( 𝐹  “  𝐴 ) ) ) ) | 
						
							| 77 | 71 76 | mpbird | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  →  ∀ 𝑥  ∈  ( 𝐹  “  𝐴 ) ∃ 𝑦  ∈  𝐽 ( 𝑥  ∈  𝑦  ∧  𝑦  ⊆  ( 𝐹  “  𝐴 ) ) ) | 
						
							| 78 |  | eltop2 | ⊢ ( 𝐽  ∈  Top  →  ( ( 𝐹  “  𝐴 )  ∈  𝐽  ↔  ∀ 𝑥  ∈  ( 𝐹  “  𝐴 ) ∃ 𝑦  ∈  𝐽 ( 𝑥  ∈  𝑦  ∧  𝑦  ⊆  ( 𝐹  “  𝐴 ) ) ) ) | 
						
							| 79 | 40 78 | syl | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  →  ( ( 𝐹  “  𝐴 )  ∈  𝐽  ↔  ∀ 𝑥  ∈  ( 𝐹  “  𝐴 ) ∃ 𝑦  ∈  𝐽 ( 𝑥  ∈  𝑦  ∧  𝑦  ⊆  ( 𝐹  “  𝐴 ) ) ) ) | 
						
							| 80 | 77 79 | mpbird | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐴  ∈  𝐶 )  →  ( 𝐹  “  𝐴 )  ∈  𝐽 ) |